

Lehrveranstaltungshandbuch LMW

Licht-Materie-Wechselwirkung

Version: 1 | Letzte Änderung: 29.09.2019 18:32 | Entwurf: 0 | Status: vom verantwortlichen Dozent freigegeben

- <u>Allgemeine Informationen</u>

Langname	Licht-Materie- Wechselwirkung
Anerkennende LModule	LMW BaET, LMW BaOPT
Verantwortlich	Prof. Dr. Uwe Oberheide Professor Fakultät IME
Gültig ab	Wintersemester 2022/23
Niveau	Bachelor
Semester im Jahr	Wintersemester
Dauer	Semester
Stunden im Selbststudium	78
ECTS	5
Dozenten	Prof. Dr. Uwe Oberheide Professor Fakultät IME

Literatur

Pedrotti - Optik für Ingenieure, Springer

Saleh, Teich - Grundlagen der Photonik, Wiley-VCH

Abschlussprüfung	
Details	Prüfung der Taxonomiestufen Verstehen und Anwenden: Beschreibung von elementaren Anwendungen und Wechselwirkungsprozessen in idealisierter Anwendungsumgebung Prüfung der Taxonomiestufe
Mindeststandard	Analysieren: Anhand von realen Anwendungsfällen passende Auswahl von optischen Komponenten und Verfahren 50 % der Fragen richtig
Prüfungstyp	mündliche Prüfung,

strukturierte Befragung

Voraussetzungen	Physik: Wellenausbreitung, Schwingungen, Brechungsindex
	Materialkunde: elektrische Materialeigenschaften (Permeabilität, Bandlücke) elektrischer Dipol
	Mathematik: Lineare Algebra (Vektor- / Matrizenrechnung)
	Optik: radiometrische und fotometrische Größen, geometrische Optik, Wellenoptik
Unterrichtssprache	deutsch
separate Abschlussprüfung	Ja

- Vorlesung / Übungen

Lernziele **Zieltyp Beschreibung** Kenntnisse Ausbreitung elektromagnetischer - Lorentz-Oszillator - Permeabilität Wechselwirkungsprozesse von Licht und Materie: - (komplexer) Brechungsindex - Absorption - Streuung - Lumineszenz Erzeugung polarisierter Strahlung Doppelbrechung - Polarisation - Phasenplatten Energieniveaus: - Linienspektren - Fluoreszenz / Phosphoreszenz - Bändermodelle Detektion elektromagnetischer Strahlung: - Halbleiterdetektoren - Messysteme räumlicher Verteilungen Lichtinduzierte Materialbearbeitungsprozesse: - Lithographie - Ablation Photonische Kristalle Fertigkeiten Analogien bekannter physikalischer Prozesse erkennen und übertragen (angeregter, gedämpfter Oszillator -> Lorentz-Oszillator) Idealisierte Systeme auf reale Systeme übertragen und das qualitative Verhalten ableiten

Zusammenhänge von Größen (Absorption / Brechungsindex) beschreiben und erklären, sowie auf reale Materialien übertragen Technische Anwendungen und Fragestellungen analysieren, in Einzelprozesse zerlegen und über

bekannte Licht-Materie-

Wechselwirkungsprozesse lösen

Besondere Voraussetzungen

keine

Begleitmaterial	Vortragsfolien zur
	Vorlesung
	Links auf
	Internetressourcen mit
	grundlegenden
	Informationen
Separate Prüfung	Nein

Typ Präsenzzeit (h/Wo.) Vorlesung 3 Übungen (ganzer Kurs) 1 Übungen (geteilter Kurs) Tutorium (freiwillig) 0

© 2022 Technische Hochschule Köln