Course Manual ABT

Theory of imaging

Version: 4 | Last Change: 19.09.2019 15:07 | Draft: 0 | Status: vom verantwortlichen Dozent freigegeben

- General information

Long name	Theory of imaging
Approving CModule	<u>ABT_BaET, ABT_BaOPT</u>
Responsible	Prof. Dr. Stefan Altmeyer Professor Fakultät IME
Valid from	winter semester 2022/23
Level	Bachelor
Semester in the year	winter semester
Duration	Semester
Hours in self-study	78
ECTS	5
Professors	Prof. Dr. Stefan Altmeyer Professor Fakultät IME
Requirements	series expansion differential calculus multidimensional integral calculus basics of Fourier Transform geometrical optics basics of wave optics
Language	German
Separate final exam	Yes

Literature

Pedrotti, Pedrotti, Bausch, Schmidt: Optik für Ingenieure. Grundlagen (Springer)

Hecht: Optik (Oldenbourg)

Perez: Optik (Spektrum Akademischer Verlag)

Goodman: Introduction to Fourier Optics (Roberts and Co. Publishers)

Kurz, Lauterborn: Coherent Optics (Springer)

Final exam

Details

As long as the number of participants is not too high, oral examination is preferred of written exams.

Lowest competence level checked is knowledge. This could be e.g. the names of the five Seidel aberrations, the reason of their occurance, the structure of their point spread functions and strategy of tackling them.

The next competence level is related to skills. Examination could be done by showing a sketch of an optical setup and it has to be devided into functional groups and in each functional group the critical apsects regarding imaging quality have to be identified. Another skill to be tested could be the the calculation of the incoherent optical transfer function from a given coherent optical transfer function.

The highest

competence level adressed is methodical expertise. It can be checked by the task to do configure an optical imaging system or an analytical measurement setup for an optical imaging system. Alternatively a given system which does not meet the desired specifications has to be optimzied: in a guided discussion it can be found out easily, if the underlying principles are understood and can be applied proactively, if intellectual transfer is made and if there is sufficient overview.

- <u>Lecture / Exercises</u>

Goal type	Description
Knowledge	mathematics
	twodimensional Fourier transform
	linearity theorem
	similarity theorem
	shift theorem
	convolution theorem
	autocorrelation theorem
	Fourier transform of some special
	functions
	Hilber space
	inner product
	norm
	expansion in basis vectors
	completness
	Delta functionals
	definition in multidimensional
	space, shifted
	sifting property mathematically equivalent
	representations
	representations
	coherence
	representation as correlation
	function
	temporal coherence and Wiener-
	Chintschin theorem
	spatial coherence and Van-Cittert-
	Zernike theorem
	two dimensional linear system
	theory applied to optical systems
	Point Spread Function (PSF) of
	electrical fields and of intensities
	Optical Transfer Function (OTF) for
	electrical fields and intensities
	Modulation Transfer Function
	(MTF) as amplitude of the OTF
	Phase Transfer Function (PTF) as
	phase of the OTF relation of OTF and PSF
	relation to pupil function relation to wave front aberration
	function
	mathematical relation of coherent
	and incoherent optical transfer
	function
	coherent and incoherent resolution
	limit
	relation of coherence and
	incoherence to fields and
	intensities
	Aberrations

Special requirements

none

Accompanying	
material	

Separate exam

downloadable file

lecture notes as

Туре	Attendance (h/Wk.)	
xpenditure	e classroom teaching	
	determination of aberrations	
	design optical setups for the measurement of optical phases	
	recognize and name aberrations	
	make use and apply coherent and incoherent optical system theory safely	
	identify coherent and incoherent optical systems	
	analyse optical systems	
Skills	calculate Fourier transforms with extensive use of the Fourier theorems safely	
	shearing plate	
	Methods for measuring phases Shack-Hartmann sensor	
	Zernike polynomials	
	strategies of prevention and compensation of the aberrations	
	plane causes of the aberrations	
	Seidel aberrations point spread functions phase representations in the pupil	

- Practical training

Goal type	Description
Skills	plan and build optical setups
	adjust optical setups
	use commercial software packages
	to analyse measured data
	to graph data
	measure impulse response
	function and transfer function
	calculate impuls response function
	from a given transfer function
	calculate transfer function from a
	given impulse response function
	build a light source with adjustable
	degree of coherence
	measure and interpret the transfer
	function of an objective in
	dependence of the degree of
	coherence
	measure and interpret the
	modulation transfer function of an
	objective in dependence of the aperture
	aperture
	write scientific reports
	describe the task
	explain the idea of the solution illustrate the experimental setup
	explain the data processing
	make error analysis
	present the results and make a
	critical discussion

Expenditure classroom teaching		
Туре	Attendance (h/Wk.)	
Practical training	2	
Tutorial (voluntary)	0	

none	
Accompanying material	Instrcutions for the experiments as downloadable files.
	Operating manuals for complex equipment as downloadable files.
Separate exam	Yes
Separate exam	
Exam Type	EN Projektaufgabe im Team bearbeiten (z.B. im Praktikum)

Details	 Written examination questions related to the experiment have to be prepared at home and shown at the beginning of the laboratory.
	 The underlying ideas of the experiment have to be explained at the beginning of the laboratory.
	3) Make the experimen alone (preferred) or in a team of two. - Build up and adjust your own setup - Acquire / measure date with this setup
	 4) Write a documentation on the experiment. It will be checked wih regard to completness scientific and precise language correctness understanding of the interrellations and interpretation of the results
Minimum standard	All written tasks must have been delt with.
	The basic ideas of the experiment must have been understood.
	All experiments must have been performed.
	The reports must be free of systematical errors.

© 2022 Technische Hochschule Köln