

TH Köln

Course Manual DBT

Digital Imaging

Version: 1 | Last Change: 08.10.2019 23:17 | Draft: 0 | Status: vom verantwortlichen Dozent freigegeben

- General information

Long name	Digital Imaging
Approving CModule	DBT_MaMT
Responsible	Prof. Dr. Gregor Fischer Professor Fakultät IME
Valid from	winter semester 2020/21
Level	Master
Semester in the year	winter semester
Duration	Semester
Hours in self-study	78
ECTS	5
Professors	Prof. Dr. Gregor Fischer Professor Fakultät IME
Requirements	none
Language	German
Separate final exam	Yes

Literature
R.W.G. Hunt, The Reproduction of Color
M. Fairchild, Color Appearance Models, Wiley, 2nd ed.
G. C. Holst, T. S. Lomheim, CMOS/CCD Sensors and Camera Systems, SPIE
J. Nakamura, Image Sensors and Signal Processing for Digital Still Cameras, Taylor & Francis
Reinhard/Ward/Pattanaik/Debevec, High Dynamic Range Imaging, Elsevier 2010
R. Gonzales/R. Woods/Eddins, Digital Image Processing Using Matlab, Prentice Hall, 2004
W. Pratt, Digital Image Processing, Wiley, 4th ed., 2007
A. Jain, Fundamentals of Digital Image Processing, Prentice Hall, 1988

Final exam	
Details	Short project with final oral exam
Minimum standard	Working Matlab program Oral presentation of the project objectives and the project results

Exam Type

EN mündliche Prüfung, strukturierte Befragung

<u>Lecture / Exercises</u>

Learning goals

Goal type	Description
Knowledge	Color Imaging Color capturing with electronic sensors Color detectors Demosaicking Optical antialiasing filters Color management for DSCs ICC profiles computing with least squares fit Testing color accuracy Color appearance models Multispectral Imaging Spectral sensitivities estimation by means of a general method to stabilize an instable set of linear equations Statistics of natural spectra (Principal Components Analysis) Spectral stimulus estimation
Knowledge	HDR Imaging HDR capturing technology Contrast management photo receptor model unsharp masking retinex algorithm Automatic control
Knowledge	Imaging Methods Automatic white balancing Grey world approach Color-by-Correlation Dichromatic reflection model MTF management MTF measurement filter design for MTF optimization and sharpening Adaptive sharpening Denoising Modelling of sensor noise Locally adaptive smoothing filter Wiener filtering Bilateral filtering Non-Local-Means filtering Defect pixel / cluster correction
Skills	Describe the function and effects of different imaging methods
Skills	derive correction models for the image processing from the optical and electronic mechanisms

Special requirements

Basics of the multivariate statistics, Principal Components Analysis (basic course mathematics) Linear optimization methods (basic course mathematics)

Accompanying material	electronic slides as presented during lectures, electronic collection of excercises
Separate exam	No

Skills	explain the application of basic
	mathematical tools for modelling
	and optimization of imaging
	methods

Expenditure classroom teaching	
Туре	Attendance (h/Wk.)
Lecture	2
Exercises (whole course)	0
Exercises (shared course)	0
Tutorial (voluntary)	0

Practical training

earning go	oais
Goal type	Description
Skills	analyse optical and electronic imaging characteristics
Skills	recognize and assess imaging defects
Skills	realize imaging methods by software programmin according to a given specification or scientific paper
Skills	measure optical and electronic imaging characteristics or defects
Skills	implement new imaging methods according to a given specification or scientific paper
Skills	optimize imaging methods by basic mathematical optimization methods
Skills	compare image quality of different imaging methods
Skills	document results

Expenditure classroom teaching	
Туре	Attendance (h/Wk.)
Practical training	2
Tutorial (voluntary)	0

Special requirements

none

Imageval in Matlab)	data (Matlab) image processing (Matlab) digital camera simulation (Stanford's
	`

Separate exam	
Ехат Туре	EN praxisnahes Szenario bearbeiten (z.B. im Praktikum)
Details	Protocol reports about lab exercises
Minimum standard	Reports for all lab excercises must be delivered in correct form with correct results

© 2022 Technische Hochschule Köln