Course Manual NLO

Nonlinear optics

Version: 1 | Last Change: 29.09.2019 18:38 | Draft: 0 | Status: vom verantwortlichen Dozent freigegeben

- General information

Long name	Nonlinear optics	
Approving CModule	<u>NLO_MaET</u>	
Responsible	Prof. Dr, Uwe Oberheide Professor Fakultät IME	
Valid from	summer semester 2021	
Level	Master	
Semester in the year	summer semester	
Duration	Semester	
Hours in self-study	78	
ECTS	5	
Professors	Prof. Dr, Uwe Oberheide Professor Fakultät IME	
Requirements	Physics: wave propagation, phase velocity Laser technology: laser types, basic principle of stimulated emission Light-matter interaction: absorption,	
	scattering, refractive index, birefringence	
Language	scattering, refractive index, birefringence German	

Literature

Boyd – Nonlinear Optics, Elsevier

Pedrotti – Optik für Ingenieure, Springer

Saleh, Teich – Grundlagen der Photonik, Wiley VCH

Final exam Details Checking the taxonomy levels of understanding and applying by describing elementary applications and interaction processes in an idealized application environment. Checking the taxonomy levels analyzing and synthesizing on the basis of real application cases and the associated selection of the required optical components and processes according to the respective interaction processes determined **Minimum standard** 50 % of the questions correctly answered

Exam Type

EN mündliche Prüfung, strukturierte Befragung

- Lecture / Exercises

Goal type	Description
Knowledge	Optical frequency multiplication (crystal coherence lengths, phase matching, quasi phase matching and periodic polarity) Frequency mixing Optical-parametric oscillation and amplification Electro-, magneto- and acousto- optical effects Q-switch, mode coupling, ultrashort pulse laser Application of multiphoton processes Photorefraction, stimulated Brillouin scattering, phase conjugating mirrors
Skills	Recognizing analogies of known linear physical processes (light- matter interaction at low intensity) and transferring them to nonlinear processes Describe processes mathematically and transfer the result into physica effects Transfer idealized systems to real systems and derive qualitative behavior Describe and explain correlations of quantities (saturable absorption / multidimensional refractive index) and transfer them to real materials. Analyze technical applications and problems, break them down into individual processes and solve them using known nonlinear interactions.

Expenditure classroom teaching

Туре	Attendance (h/Wk.)
Lecture	2
Exercises (whole course)	1
Exercises (shared course)	0

Special requirements

none

	Links to Internet resources with basic information	
material	Links to Internet	
material	the lecture	
Accompanying	Presentation slides for	

Tutorial (voluntary) 0

- Lecture / Exercises

Goal type	Description	none
Knowledge	Presentations on	
	applications/processes based on the content of the course (transfer of course content to other applications). Examples: - spectral broadening in a femtosecond laser by self-phase modulation	Accompanying material Separate exam
	 temporal measurement of ultrashort laser pulses compensation of imaging errors by the use of phase conjugating 	Separate exam
	mirrors - laser induced nuclear fusion - multiphoton processes - generation and application of higher harmonics - optical parametric oscillators - free-electron laser	Exam Type
Skills	Procurement of suitable literature/information Familiarisation with new technical field of expertise Use of english technical literature Evaluation of available literature Checking the relevance of information Filtering out essential information and preparing it for the appropriate target group	Details
		Minimum standard
xpenditure	classroom teaching	
Туре	Attendance (h/Wk.)	

0

none Accompanying Links to Internet material resources with basic information Separate exam Yes Separate exam Exam Type EN Fachgespräch (Interview) zu besonderen Fragestellungen (Szenario, Projektaufgabe, Lieraturrecherche) Details Presentation on a given topic with literature research The presentation should be adapted to the previous knowledge of the students of the course and enable a discussion of the content. **Minimum standard** structured presentation of the most important points with a list of related sources

© 2022 Technische Hochschule Köln

Tutorial (voluntary)