

TH Köln

Course Manual PH1

Physics 1

Version: 1 | Last Change: 29.09.2019 18:28 | Draft: 0 | Status: vom verantwortlichen Dozent freigegeben

- General information

Long name	Physics 1	
Approving CModule	PH1_BaET	
Responsible	Prof. Dr, Uwe Oberheide Professor Fakultät IME	
Valid from	summer semester 2021	
Level	Bachelor	
Semester in the year	summer semester	
Duration	Semester	
Hours in self-study	60	
ECTS	5	
Professors	Prof. Dr. Uwe Oberheide Professor Fakultät IME	
Requirements	Functions (sin, cos, exp, In) Equations and systems of equations (linear, quadratic) Analysis (differential and integral calculus) Linear algebra (2-/3-dim vector calculation)	
Language	German	
Separate final exam	Yes	

Literature

Tippler, Mosca; Physik (Springer Spektrum)

Giancoli; Physik Lehr- und Übungsbuch (Pearson)

Halliday, Resnick, Walker; Halliday Physik (Wiley-VCH)

Final exam

	query further knowledge and the basic understanding of physical relationships - Preparation of sketches to test further understanding - Application-oriented text tasks, whose solutions make it necessary to analyze and reduce the physical problems, select a suitable model and apply it mathematically.
Minimum standard	50 % of the questions and tasks correctly solved

Lecture / Exercises

Learning goals

Goal type	Description
Knowledge	Mechanics of rigid bodies - Physical quantities and units - Kinematic (temporal description of linear and rotary motion) - Analogy of linear and rotary motion - One-dimensional motion - Multidimensional motion and projectile motion - Dynamics (forces, apparent forces, frictional forces, Newton's axioms) - Work, energy, energy conservation - Momentum, momentum conservation and impact processes - Torque and moment of inertia - Angular momentum and its conservation
	Mechanism of deformable body - Elastic and plastic deformation - Tension, pressure
Skills	Recognize and apply analogies, e.g. linear and rotary motion Derive balance of power and set up equations of motion Derive energy balances and determine the states of motion from energy conservation Derive momentum balances and determine motion states from the momentum conservation Analyze simple physical problems,

Special requirements

none

Accompanying material

Presentation slides for the lecture Collection of exercise tasks with solutions Questionnaire to prepare the exam Links to Internet resources with basic information

Separate exam

No

Expenditure classroom teaching

Туре	Attendance (h/Wk.)
Lecture	3
Exercises (whole course)	2
Exercises (shared course)	0
Tutorial (voluntary)	0

calculate with them

© 2022 Technische Hochschule Köln	