Course Manual QM

Quantum mechanics

Version: 1 | Last Change: 29.09.2019 18:39 | Draft: 0 | Status: vom verantwortlichen Dozent freigegeben

- General information

Long name	Quantum mechanics	
Approving CModule	<u>QM_MaET</u>	
Responsible	Prof. Dr, Uwe Oberheide Professor Fakultät IME	
Valid from	winter semester 2020/21	
Level	Master	
Semester in the year	winter semester	
Duration	Semester	
Hours in self-study	78	
ECTS	5	
Professors	Prof. Dr, Uwe Oberheide Professor Fakultät IME	
Requirements	In-depth knowledge of mathematics (integral calculus, differential calculus, vector geometry) Basic knowledge of physics (oscillations and waves, double slit, interference, thermodynamics, potential / kinetic energy) Basic knowledge of electrical engineering (magnetic and electric fields, components)	

Literature

Harris – Moderne Physik, Pearson Verlag

Feynman - Vorlesungen über Physik Band III:Quantenmechanik, Oldenbourg Verlag

1

Language	German
Separate final exam	Yes

- <u>Lecture / Exercises</u>

Knowledge	The failure of classical physics (black spot, photoelectric effect, Compton effect, Stern-Gerlach experiment, Bohr's atom model, matter waves) Quantum behaviour (experiments
	with spheres, waves and electrons; basic principles of quantum mechanics; principle of indeterminacy; laws of combination of amplitudes; identical particles) Schrödinger equation (development of the wave equation; stationary, time- dependent) simple potential problems (infinitely deep potential pot, finitely deep potential pot, finitely deep potential pot, potential stage, potential barrier, harmonic oscillator, hydrogen atom) Basic principles of quantum computers and quantum
Skills	cryptography Description of given physical problems mathematically by listing the Schrödinger equation and applying of methods to solve the differential equations (separation approaches, limit value considerations) To evaluate physical solutions and select them by analogy Analyzing quantum effects and transferring them to technical applications

Special requirement	:s
none	
Accompanying	Presentation slides for
material	the lecture
	Links to Internet
	resources with basic
	information
Separate exam	No

Tutorial (voluntary)

3

0

Lecture

Learning goals		Special requirements	
Goal type	Description	none	
Knowledge	Discourse on quantum mechanical processes (uncertainty principle, wave-particle dualism, wave functions/packages) and their applications in real systems in the context of the course	Accompanying material Separate exam	undefined No
xpenditure	classroom teaching		
Туре	Attendance (h/Wk.)		
Seminar	1		
Tutorial (volu	ntary) 0		

© 2022 Technische Hochschule Köln