Course Manual SRF

Radiation, radiometry, photometry

Version: 1 | Last Change: 06.10.2019 13:46 | Draft: 0 | Status: vom verantwortlichen Dozent freigegeben

- General information

Long name	Radiation, radiometry, photometry
Approving CModule	<u>SRF_BaET, SRF_BaOPT</u>
Responsible	Prof. Dr. Michael Gartz Professor Fakultät IME
Valid from	summer semester 2022
Level	Bachelor
Semester in the year	summer semester
Duration	Semester
Hours in self-study	78
ECTS	5
Professors	Prof. Dr. Michael Gartz Professor Fakultät IME
Requirements	differential calculus, integral calculus, trigonometry, elementary geometry
Language	German
Separate final exam	Yes

Literature

Pedrotti, Pedrotti, Bausch, Schmidt: Optik für Ingenieure. Grundlagen (Springer)

Hecht: Optik (Oldenbourg)

Bergmann, Schaefer, Bd.3, Optik, de Gruyter

Schröder, Technische Optik, Vogel Verlag

Naumann, Schröder, Bauelemente der Optik, Hanser Verlag

Final exam

Details	Written examination with differentiated types of exercises of
	taxonomy ratings like
	understanding,
	appliance, analyzing
	and synthesizing.
	That means, within the
	exercises the terms like
	the basic optical
	principles of radiometr
	and photometry and
	the dihedral angle have
	to be understood and
	can be exerted.
	The optical correlation
	like radiation transfer
	law have to be
	understood and to be
	exerted for analyzed
	optical questions.
	Understood and
	remembered formula
	and optical principles
	have to be combined
	for the solving of new
	types of exercises. Formulas have to be
	converted.
Minimum standard	50 % of the exercises
	with different taxonom
	ratings correctly
	processed
Exam Type	EN Klausur

- <u>Lecture / Exercises</u>

Goal type	Description
Knowledge	basic optical principles of
	radiometry and photometry
	spectrum of electromagnetic
	radiation
	colour
	colour temperature
	radiometric basic optical principles
	differential solid angle
	radiant energy, power, output
	power per unit solid angle
	power output per unit area, power
	output per unit solid angle
	and unit emitting area, power
	input per unit area,
	energy per unit area
	photometric basic optical
	principles:
	luminance, luminous flux,
	luminosity,
	photometric brightness,
	illuminance, illumination
	Lambertian radiator
	radiation transfer law
	material classification figures to
	describe the interaction
	radiation with material
	spectral reflectance
	spectral transmittance
	spectral absorptance
	spectral emissivity
	thermal equilibrium
	stationariness
Knowledge	radiation laws of the Black-body
	radiation:
	Planck's law
	Rayleigh-Jeans law
	ultraviolet catastrophe
	Wien's law of radiation
	Wien's displacement law
	Stefan-Boltzmann law
	Kirschhoffsche laws
Knowledge	Scattering
	Raylegh scattering
	Mie scattering
Knowledge	radiation detector:
	photodiode
	spectrometer
	bolometer
	spezial detectors

Special requirements

none

Separate exam	downloadable files
	exercise task as
material	the lecture as pdf-files,
Accompanying	Presentation slides for

Knowledge	properties of specialized elements and optical systems: radiationen sources black-body radiator grey radiator luminescence radiator specialized radiation sources: synchrotron, plasma source etc. selective radiators pyrometric optical set-up, functionality correction of environmental temperature light sources: halogen lamp electric discharge lamp LED
Skills	calculation of conversion of the spectral energy density to spectral radiance conversion of the frequency specific spectral radiance to wave length specific spectral radiance spectral radiant exitance from spectral radiance conversion between radiometric quantity and photometricquantity radiant efficiency wave length from band gap in case of led's
Skills	to distinguish specified time of thermal radiators specified time of luminescence radiators
Skills	to evaluate and to assess thermal radiators luminescence radiators discharge radiation sources
Expenditure	classroom teaching

Туре	Attendance (h/Wk.)
Lecture	2
Exercises (whole course)	1
Exercises (shared course)	0

Tutorial (voluntary) 0

- Practical training

Goal type	Description
Skills	align of optical settings
Skills	make record series of
	measurements and document
	them
Skills	generate diagrams
Skills	checking results for plausibility
Skills	recognize and understand
	correlations
Skills	make mathematical error analysis
Skills	realize basical optical set-ups,
	assemble, align, make a functional
	check
Skills	investigate natural scientific and
	technical principles by optical set-
	ups
	project record series of measurements,
	estimate error effects,
	check the suitability of the set-up
Skills	make the evaluation of self
	generated record series of
	measurements
	present measurement values
	graphically calculate implicit values in correct
	mathematical manner from
	measurement values
	recognize logical errors and name
	them
	simulate measurement values with
	given formulas
Skills	compose a traceable report
	describe the conceptual
	formulation
	state the method of resolution represent the results in a clear
	manner
	discuss the results in a technical,
	discuss the results in a technical, academic manner

Special requirements

none

Accompanying material	written instructions to each experiment as pdf- files
Separate exam	No

		work on complex technical tasks by teamwork organize in subtasks present the results and make a critical discussion		
classr	oom	5	(h/Wk.)	
ng		1		
itary)		0		
	classr ng Itary)	ng	ng 1	Attendance (h/Wk.) ng 1

© 2022 Technische Hochschule Köln