
Course Manual SEA
Software engineering for automation technology

Version: undefined | Last Change: - | Draft: undefined | Status: undefined

General information

Long name Software engineering
for automation
technology

Approving CModule SE_BaET

Responsible Prof. Dr. Stefan Kreiser
Professor Fakultät IME

Valid from winter semester
2020/21

Remarks Lecture / Exercise
weekly (Flipped
Classroom), Project
work

Level Bachelor

Semester in the year summer semester

Duration Semester

Hours in self-study 90

ECTS 5

Professors Prof. Dr. Stefan Kreiser
Professor Fakultät IME

Requirements - basic knowledge of
behavioral modeling
(e.g. PAP, automata,
state charts, Petri Nets)
- basic programming
knowledge in C/C++
- basic knowledge of
object orientation
(classes, objects)

Literature

I. Sommerville: Software Engineering (Addison-
Wesley / Pearson Studium)

OMG Unified Modeling Language Spec.,
www.omg.org/uml

Oestereich, Bernd et. al.: Analyse und Design mit
der UML 2.5: Objektorientierte
Softwareentwicklung, Oldenbourg
Wissenschaftsverlag

Litke, H.D.: Projektmanagement - Handbuch für die
Praxis: Konzepte - Instrumente - Umsetzung, Carl
Hanser Verlag

Final exam

Details Natural language
description of a realistic
automation system
(textbook):
Modeling in UML,
sound implementation
in C++.
20min written
preparation,
20min oral questioning
on the prepared
solution with possibility
for optimization.

file:///C:/Users/rene/OneDrive/Dokumente/Arbeit/THK/Gremien/F07-Lehre/Daten/Web/html_pdf/M_SE_BaET2020.html

Language German and English

Separate final exam Yes

Minimum standard Using a natural
language description of
a realistic automation
system of appropriate
complexity, students
model the system
model of a software
system suitable for
solving the given
automation task and
justify and evaluate the
essential properties of
their design. To justify
and evaluate, students
refer to the specific
requirements of the
automation system as
well as to fundamental
quality criteria for
automation software
systems (system,
development,
operation, service, and
maintenance
requirements),
demonstrating on
selected model artifacts
in particular that and
how the system model
can be transformed into
a software model and
subsequently into an
implementation model,
and what consequences
their design has for the
models of the
subsequent design
phases.

Exam Type EN mündliche Prüfung,
strukturierte Befragung

Lecture / Exercises

Learning goals

Goal type Description

Knowledge Terms
- software system, software
product
- software quality
- software Complexity
Object-oriented modeling with
UML
- domain model (structure,
behavior, system boundaries /
interfaces)
- software architecture model
- implementation model
- model transformations
- modeling tools
Process models
- linear (phase model, V-model)
- evolutionary (eXtreme
Programming, Scrum, Timebox)
Quality management (SOPs)
Requirements analysis
- requirements engineering
- design-input-requirements
(requirement specification)
- Laws, standards and
organizational requirements
Product risk analysis (FMEA, FTA)
Design
- design principles
- feasibility studies
- system specification (functional
specification)
- software specifications
Implementation
- choice of programming
languages, programming
guidelines
- development in distributed
teams, developer test
- system integration
- commissioning
Verification & Validation
- formalized software testing
(dynamic, static)
- field evaluation
- operational support
Management tasks
- document management
- configuration management
(version management, build
management)
- test management
- change management

Special literature

keine

Special requirements

none

Accompanying
material

electronic slides for the
lecture, electronic
collection of exercises,
professional
development tool for
Unified Modeling
Language (UML2),
Lecture videos

Separate exam No

Skills Analyze technical software systems
- methodically elicit, consolidate
and prioritize system requirements
- design formalized requirements
specification
Model technical software systems
- use Unified Modeling Language
notations to model simple
software systems
- use notations for structural
modeling (class diagram, package
diagram, component diagram,
distribution diagram)
- use notations for behavioral and
interface modeling (use-case
diagram, activity diagram and
action concept state machine and
protocol machine, sequence
diagram)
Name and delimit modeling levels
- system model (customer view):
Entity model, interface model,
behavior model
- software model (developer view):
Technical class models, detailed
behavioral models, design
principles, basic software
architectures.
Derive context, boundaries, tasks,
behavior, and structures of simple
software systems from texts
- comprehend technical text
sections completely
- recognize and understand
implicit statements
- recognize and resolve
inconsistencies
- recognize and derive missing
information or ask for it
Model software systems with
UML2 notations
- design simple system models
iteratively (derive entity model,
context and use-case model from
customer's point of view, detail use
cases, describe standard scenario
and essential alternative scenarios
and refine as activity diagram)
- design simple software models
iteratively (refactor and detail
entity model from developer's
perspective, detail behavioral
models from developer's
perspective, model structure-based
behavior as state chart, refine
activities to action level, establish
relationship between actions and
class methods)
Operate professional UML2 design
tool
Verify models
- define evaluation criteria

- adhere to modeling guidelines
and design principles
- evaluate completeness or
unnecessary complexity
- evaluate quality with respect to
specific customer specifications
(define test cases, perform and
document model reviews,
detect and name model errors,
correct and optimize models based
on assessments)
Design technical software systems
- identify product risks, define
mitigation measures and consider
them in the design
- name, explain and apply design
principles to achieve defined
quality goals
- select and apply problem-
oriented system and software
architecture
- explain and exemplarily apply
methods for software development
in distributed teams
- explain methods for software
testing in distributed teams and
apply them exemplarily
Develop technical software
systems quality-controlled
- apply process models by way of
example
- Obtain information from
international standards for
software development
(German/English)

Expenditure classroom teaching

Type Attendance (h/Wk.)

Lecture 1

Exercises (whole course) 2

Lecture / Exercises

Learning goals

Goal type Description

Special literature

keine

Special requirements

- basic object-oriented programming skills (C/C++)
- basic skills in using an IDE / debugging

Accompanying
material

Design input
requirements for
project task, Roundtrip
engineering task to
familiarize with UML,
UML modeling tool and
IDE (Integrated
Development
Environment).

Separate exam Yes

Separate exam

Exam Type EN Projektaufgabe im
Team bearbeiten (z.B.
im Praktikum)

Skills Analyze larger technical software
systems
- comprehend and understand
extensive technical texts, especially
English-language texts
- evaluate and arrange extensive
system requirements
Model larger technical software
systems
- delimit modeling levels: system
model (customer view), software
model (developer view)
- use model notations
systematically to describe systems
- iteratively derive interface,
behavior and structure models in
UML2 notations
- use professional UML2 design
tools purposefully
- verify and evaluate models,
correct model errors and optimize
models
Design larger technical software
systems
- select and apply design principles
to achieve defined quality goals
- select and apply problem-
oriented system and software
architecture
- perform software development
and software testing in distributed
teams
Create and review source code
- analyze given source code and
extend it purposefully
- use object-oriented
programming language (C++)
Develop larger technical software
systems in a quality-controlled
manner
- apply evolutionary procedure
model
- gain information from
international standards for
software development
(German/English)
Present the team's work results in
English in a compact and target
group-oriented manner

Demonstrate action competencies:
Model real-world systems
- Decomposition (recognize or
define system boundaries and use
them correctly, recognize or define
system interfaces and use them
correctly, recognize or define
system structures and represent
them correctly, recognize or define
system functions and represent
them correctly)
- Composition (creating structural

Details Part 1 (round-trip
engineering): perform
comprehensible
transformations
between system model,
software model,
implementation model
and source code based
on the requirements
and framework
conditions.

Part 2 (Project Task):
Based on a natural
language description
(English) of a realistic
automation system of
appropriate complexity,
students model the
system model of a
software system
suitable for solving the
automation task and
justify and evaluate the
key features of their
design. To justify and
evaluate, students refer
to the specific
requirements of the
automation system as
well as to basic quality
criteria for automation
software systems
(system, development,
operation, service, and
maintenance
requirements),
demonstrating on
selected model artifacts
in particular that and
how the system model
can be transformed into
a software model and
subsequently into an
implementation model,
and what consequences
their design has for the
models of the
subsequent design
phases.

and behavioral models, integrating
models, verifying and evaluating
partial models and overall models)
- master complex tasks in a team
based on division of labor (plan
and control simple projects,
comply with agreements and
deadlines, plan and conduct
reviews)
- apply model transformations
(revert model elements from given
C++ source code, complete and
verify models by manual source
code analysis, model system
extensions and solution
modifications based on a current
specification, generate source code
from new model and complete
generated source code manually,
verify implementation in the
debugger and by systematic tests
on the target system)

Expenditure classroom teaching

Type Attendance (h/Wk.)

Project 1

Minimum standard Part 1: Executable
software system that
can be shown to have
the required properties
and to be consistent
with the UML model.

Part 2: System model
that demonstrably
fulfills the essential
requirements from the
DIRs, software
architecture concept
that is justifiably
suitable for
implementing the
system model taking
into account all DIRs.

© 2022 Technische Hochschule Köln

