Course Manual ASR

Control Systems of Electrical Drives

Version: 2 | Last Change: 08.09.2019 11:57 | Draft: 0 | Status: vom verantwortlichen Dozent freigegeben

- General information

Long name	Control Systems of Electrical Drives	
Approving CModule	<u>ASR_BaET</u>	
Responsible	Prof. Dr. Andreas Lohner Professor Fakultät IME	
Valid from	summer semester 2023	
Level	Bachelor	
Semester in the year	summer semester	
Duration	Semester	
Hours in self-study	78	
ECTS	5	
Professors	Prof. Dr. Andreas Lohner Professor Fakultät IME	
Requirements	Contents of the modules Fundamentals of Electrical Engineering, Power Electronics, Fundamentals of Electric Drives, Analogue Signals and Systems	
Language	German	
Separate final exam	Yes	

Literature

Leonhard, W.: Regelung Elektrischer Antriebe, Springer Verlag

Wellenreuter, G.: Automatisieren mit SPS, Vieweg Verlag

Hameyer, K.: Elektrische Maschinen I und II, RWTH Aachen

De Doncker, R. W.: Elektrische Antriebe, RWTH Aachen

Final exam

Details	By means of an oral exam, the learned contents and competencies are queried
Minimum standard	Purely content knowledge defines the limit of pass
Ехат Туре	EN mündliche Prüfung, strukturierte Befragung

- Lecture / Exercises

Goal type	Description
Knowledge	As a basic knowledge of electrical drive technology, fundamentals in the modeling and simulation of oscillatory drives are first imparted. Then the variable speed drive inverter is discussed using the example of the externally excited DC machine with Vierquadrantsteller, so that it can be experienced how modern drives are constructed and how they are controlled or regulated. In this case, the speed and position control will be dealt with in a machine-unspecific manner. Then the field-oriented control of the asynchronous machine is presented. Finally, the switched reluctance machine is presented as an example of a modern drive and illustrated in practical experiments. The lecture is supported by the exercise, in which the drive
	structures and controls are modeled and simulated using Matlab / Simulink.
Skills	modeled and simulated using Matlab / Simulink. The students are able to carry out simple control engineering simulations and to use this
Skills	modeled and simulated using Matlab / Simulink. The students are able to carry out simple control engineering simulations and to use this
	modeled and simulated using Matlab / Simulink. The students are able to carry out simple control engineering simulations and to use this
	modeled and simulated using Matlab / Simulink. The students are able to carry out simple control engineering simulations and to use this knowledge to implement the drive.

Exercises (whole course) 0

1

0

Exercises (shared

Tutorial (voluntary)

course)

Special requirements

none

Separate exam	No	
	Exercises Literature on the topic	
material	document	
Accompanying	Lecture slides as pdf	

earning go	als	Special requireme	nts
Goal type	Description	none	
Knowledge	Application of analytical knowledge to the switched reluctance machine. Application of machine-specific control as well as program implementation of the same by means of the language C	Accompanying material Separate exam	guide for practical training No
xpenditure	classroom teaching]	
Туре	Attendance (h/Wk.)		
Practical train	ing 1		
	ntary) 0		

© 2022 Technische Hochschule Köln