

TH Köln

Course Manual ML

Machine Learnig

Version: 1 | Last Change: 23.09.2019 12:26 | Draft: 0 | Status: vom verantwortlichen Dozent freigegeben

- General information

Long name	Machine Learnig
Approving CModule	ML BaTIN
Responsible	Prof. Dr. Lothar Thieling Professor Fakultät IME
Valid from	winter semester 2022/23
Level	Bachelor
Semester in the year	winter semester
Duration	Semester
Hours in self-study	78
ECTS	5
Professors	Prof. Dr. Lothar Thieling Professor Fakultät IME
Requirements	basic skills in Java and/or C basic skills in analysis and linear algebra
Language	German
Separate final exam	Yes

Literature

Géron, Aurélien, Hands-On Machine Learning with Scikit-Learn and TensorFlow, O'Reilly Medi

Final exam	
Details	The students should demonstrate the following competences in an oral exam: 1.) Safe handling of basic concepts and mechanisms. 2.) Analyze problems in the field of machine learning and solve them with suitable methods. 3.) Analyze existing solutions and explain the used algorithmic and theory.
Minimum standard	At least 50% of the total number of points
Exam Type	EN mündliche Prüfung, strukturierte Befragung

<u>Lecture / Exercises</u>

Learning goals

Goal type	Description
Knowledge	fundamentals types of learning simple classifiers simple predictors (Equalizer alias Linear Regression) challenges in learning linear regression as the simple predictor linear regression as the simple classifier training data (handling, analysis, processing) gradient descent quality measures learning curve multi-class classifier based on binary classifiers multi-label-classification logistic regression
Knowledge	simple neuronale Netze the artificial neuron as a simple classifier operation activation function bias training a neuron multi-layer-perceptron operation purposes of the layers backpropagation training algorithm tools for creating and training simple neural networks and handling training data handling, analysis and preparation of training data creating and configuring neural networks training neural networks verification of trained networks

Special requirements

none

Accompanying material	lecture foils (electronic), undefined, self-study tutorials for the tools
Separate exam	No

Knowledge

Deep Neural Networks (DNNs) basic problems vanishing or exploding gradients high training times overfitting solutions for the probblems

mentioned above appropriate initialization of the weights, non-saturating activation function, gradient clipping accelerated optimization procedures, reuse of pre-trained

regularization to avoid overfitting tools for creating and training

handling, analysis and preparation of training data

creating and configuring neural

networks

training of neural networks verification and validation trained networks

Knowledge

Convolutional Neural Networks (CNNs) idea architecture convolutional layer pooling layer convolution as a basic operator for training and detection architectures of CNNs for different problems tools for implementation and training CNNs

Knowledge

Recurrent Neural Networks (RNNs) idea recurrent neurons training of RNNs and Deep RNNs Long Short Term Memory architectures of RNNs for different problems tools for implementation and training deep CNNs

Skills

the presented neural networks specify describe evaluate the pros and cons

solving problems using tools for handling, analysis and preparation of the training data for implementationion, verification, validation and training of all neural presented networks

Expenditure classroom teaching

Туре	Attendance (h/Wk.)
Lecture	2
Exercises (whole course)	0
Exercises (shared course)	0
Tutorial (voluntary)	0

Practical training

Learning goals	
Goal type	Description
Skills	purposeful handling of the tools
Skills	deal with complex tasks in a small team
Skills	derive complex solutions that can be implemented using neural networks

Expenditure classroom teaching

Туре	Attendance (h/Wk.)
Practical training	2
Tutorial (voluntary)	0

Special requirements

none

Separate exam	networks, self-study tutorials for the tools
Accompanying material	problem and task description (electronic), tool chain for neural

© 2022 Technische Hochschule Köln