Modulhandbuch SRF

Strahlung, Radiometrie, Fotometrie

Bachelor Elektrotechnik 2020


PDF Studiengangsverzeichnis Studienverlaufspläne Bachelor Elektrotechnik

Version: 1 | Letzte Änderung: 28.09.2019 22:09 | Entwurf: 0 | Status: vom Modulverantwortlichen freigegeben | Verantwortlich: Gartz

Anerkannte Lehrveran­staltungen SRF_Gartz
Gültig ab Sommersemester 2022
Fachsemester 4
Modul ist Bestandteil des StudienschwerpunktsPHO - Photonik
Dauer 1 Semester
ECTS 5
Zeugnistext (de) Radiometrie, Fotometrie, Strahlungs Optik
Zeugnistext (en) Radiometry, Photometry, Radiation Optics
Unterrichtssprache deutsch oder englisch
abschließende Modulprüfung Ja
Inhaltliche Voraussetzungen
Handlungsfelder
Forschung: Von Ansätzen der Grundlagenforschung bis hin zur Industrieforschung. Entwicklung: Algorithmen, Software, Verfahren , Geräte, Komponenten und Anlagen.
Qualitätskontrolle von Produkten und Prozessen, Mess- und Prüftechnologien, Zertifizierungsprozesse.
Produktion: Planung, Konzeption, Instandhaltung, Überwachung und Betrieb.
Modulprüfung
Benotet Ja
Konzept Klausuren mit differenzierten Aufgabentypen der Taxonomiestufen Verstehen, Anwenden, Analysieren und Synthetisieren.
D.h., in den Aufgaben müssen die Begriffe, wie die Radiometrischen- und die Fotometrischen Grundgrößen, der Begriff des Raumwinkels, verstanden und angewendet werden.
Die optischen Zusammenhänge, wie z.B. das Strahlungsübertragungsgesetz, müssen zur Lösung von zu analysierenden optischen Fragestellungen verstanden und angewendet werden.
Verstandene und erinnerte Formeln und Prinzipien müssen zur Lösung neuer Aufgabentypen umgestellt und kombiniert (synthetisiert) werden.
Frequenz Jedes Semester
Learning Outcomes
ID Learning Outcome
LO1 Was: Die Studierenden können Licht- und Strahlungsquellen ausmessen, charakterisieren, analysieren, vergleichen und bewerten. Sie können die Spektren von Strahlungsquellen berechnen und beurteilen und Licht und optische Strahlung differenzieren.
Womit: indem sie in Vorträgen die Radiometrischen- und Fotometrischen Grundgrößen sowie die Strahlungsübertragungsgesetze kennen gelernt haben, sowie die physikalischen Grundprinzipien zur Strahlungserzeugung und die Theorie zur Berechnung der Spektren von Hohlraumstrahlern.
Indem sie in Übungen die Theorie und Berechnungen selbstständig vertiefen und in Praktikumsversuchen die Theorien und eigenen Berechnungen durch Experimente verifizieren,
Wozu: um später eigene Strahlungs- oder Lichtquellen und Messsystem zur Beurteilung von Strahlungsquellen zu entwerfen und mittels mathematischer Formeln relevante optische charakterisierende Größen der Quellen zu berechnen. Um später bestehende Licht- und Strahlungsquellen für verschiedenste Beleuchtungs-Applikation auszuwählen und zu bewerten.
Kompetenzen
Kompetenz Ausprägung
Finden sinnvoller Systemgrenzen diese Kompetenz wird vermittelt
Abstrahieren diese Kompetenz wird vermittelt
Naturwissenschaftliche Phänomene in Realweltproblemen erkennen und erklären diese Kompetenz wird vermittelt
Erkennen, Verstehen und analysieren technischer Zusammenhänge diese Kompetenz wird vermittelt
MINT Modelle nutzen diese Kompetenz wird vermittelt
Technische Systeme simulieren Voraussetzungen für diese Kompetenz (Wissen,...) werden vermittelt
Technische Systeme analysieren diese Kompetenz wird vermittelt
Technische Systeme entwerfen Voraussetzungen für diese Kompetenz (Wissen,...) werden vermittelt
Technische Systeme prüfen diese Kompetenz wird vermittelt
MINT-Grundwissen benennen und anwenden diese Kompetenz wird vermittelt
Informationen beschaffen und auswerten diese Kompetenz wird vermittelt
Technische Zusammenhänge darstellen und erläutern diese Kompetenz wird vermittelt
Arbeitsergebnisse bewerten diese Kompetenz wird vermittelt
Komplexe technische Aufgaben im Team bearbeiten diese Kompetenz wird vermittelt
Lernkompetenz demonstrieren diese Kompetenz wird vermittelt
Sich selbst organisieren und reflektieren diese Kompetenz wird vermittelt
Sprachliche und interkulturelle Fähigkeiten anwenden diese Kompetenz wird vermittelt

Inhaltliche Voraussetzungen
Handlungsfelder
Forschung: Von Ansätzen der Grundlagenforschung bis hin zur Industrieforschung. Entwicklung: Algorithmen, Software, Verfahren , Geräte, Komponenten und Anlagen.
Qualitätskontrolle von Produkten und Prozessen, Mess- und Prüftechnologien, Zertifizierungsprozesse.
Produktion: Planung, Konzeption, Instandhaltung, Überwachung und Betrieb.
Learning Outcomes
ID Learning Outcome
LO1 Was: Die Studierenden können Licht- und Strahlungsquellen ausmessen, charakterisieren, analysieren, vergleichen und bewerten. Sie können die Spektren von Strahlungsquellen berechnen und beurteilen und Licht und optische Strahlung differenzieren.
Womit: indem sie in Vorträgen die Radiometrischen- und Fotometrischen Grundgrößen sowie die Strahlungsübertragungsgesetze kennen gelernt haben, sowie die physikalischen Grundprinzipien zur Strahlungserzeugung und die Theorie zur Berechnung der Spektren von Hohlraumstrahlern.
Indem sie in Übungen die Theorie und Berechnungen selbstständig vertiefen und in Praktikumsversuchen die Theorien und eigenen Berechnungen durch Experimente verifizieren,
Wozu: um später eigene Strahlungs- oder Lichtquellen und Messsystem zur Beurteilung von Strahlungsquellen zu entwerfen und mittels mathematischer Formeln relevante optische charakterisierende Größen der Quellen zu berechnen. Um später bestehende Licht- und Strahlungsquellen für verschiedenste Beleuchtungs-Applikation auszuwählen und zu bewerten.
Kompetenzen
Kompetenz Ausprägung
Finden sinnvoller Systemgrenzen diese Kompetenz wird vermittelt
Abstrahieren diese Kompetenz wird vermittelt
Naturwissenschaftliche Phänomene in Realweltproblemen erkennen und erklären diese Kompetenz wird vermittelt
Erkennen, Verstehen und analysieren technischer Zusammenhänge diese Kompetenz wird vermittelt
MINT Modelle nutzen diese Kompetenz wird vermittelt
Technische Systeme simulieren Voraussetzungen für diese Kompetenz (Wissen,...) werden vermittelt
Technische Systeme analysieren diese Kompetenz wird vermittelt
Technische Systeme entwerfen Voraussetzungen für diese Kompetenz (Wissen,...) werden vermittelt
Technische Systeme prüfen diese Kompetenz wird vermittelt
MINT-Grundwissen benennen und anwenden diese Kompetenz wird vermittelt
Informationen beschaffen und auswerten diese Kompetenz wird vermittelt
Technische Zusammenhänge darstellen und erläutern diese Kompetenz wird vermittelt
Arbeitsergebnisse bewerten diese Kompetenz wird vermittelt
Komplexe technische Aufgaben im Team bearbeiten diese Kompetenz wird vermittelt
Lernkompetenz demonstrieren diese Kompetenz wird vermittelt
Sich selbst organisieren und reflektieren diese Kompetenz wird vermittelt
Sprachliche und interkulturelle Fähigkeiten anwenden diese Kompetenz wird vermittelt

Typ Vorlesung / Übungen
Separate Prüfung Ja
Exempla­rische inhaltliche Operatio­nalisierung Anwendung der prinzipieller Umrechnung von Strahlungsphysikalischen, Radiometrischen Größen in Fotometrische Größen für alle relevanten Grundgrößen.
Umrechnung der Wellenlänge der Strahlung von z.B. Leuchtdioden in Photonenenergie, Wellenzahl und Frequenz;
Beschreiben der verschiedenen in der Natur vorkommenden Streuarten. Überprüfen der Strahlungsausbeute verschiedenartiger Strahlungsquellen;
Berechnung der Hohlraumstrahler Spektren und deren Maximumlage sowohl in der Frequenzdarstellung als auch in der Wellenlängendarstellung.
Anwenden der Strahlungsgesetz für verschiedene thermische Strahler bei verschiedenen Strahlertemperaturen.
Separate Prüfung
Benotet Nein
Frequenz Einmal im Jahr
Voraussetzung für Teilnahme an Modulprüfung Ja
Konzept In Präsenzübungen und Selbstlernaufgaben werden z.B. radiometrischen Grundgrößen und die charakteristischen Größen des Hohlraumstrahlers analysiert und die relevanten physikalischen Größen dieser Systeme basierend auf den verstandenen optischen Grundprinzipien und Begriffen berechnet.
Es wird überprüft, ob die Grundbegriffe und optischen Prinzipien verstanden wurden und angewendet werden können.
Neue Aufgabentypen werden vorgestellt, die analysiert und gelöst werden müssen, basierend auf den verstanden Prinzipien und Formeln, die dazu umgestellt und kombiniert werden müssen.
Typ Praktikum
Separate Prüfung Ja
Exempla­rische inhaltliche Operatio­nalisierung Aufbau einer Messanordnung und Vermessung des Emissionsvermögens, des Absorptionsvermögens, Messungen mit dem Bolometer;
Aufbau einer Messanordnung und Vermessung von Strahlungsphysikalischen und Fotometrischen Größen;
Spektrale Vermessung von Leuchtdioden;
Aufbau einer Messanordnung zum Vermessen des  Zeitverhaltens von verschiedenen Lichtquellen;
Aufbau einer Messanordnung und Durchführung von Absorptionspektroskopie.
Separate Prüfung
Benotet Nein
Frequenz Einmal im Jahr
Voraussetzung für Teilnahme an Modulprüfung Ja
Konzept In der Vorbesprechung zum Praktikum, dass möglichst in Teamarbeit durchgeführt wird, werden die notwendigen Grundbegriffe abgefragt und das Verständnis der verschieden Versuchsabläufe.
In den Praktikumsprotokollen und den dazugehörigen Besprechungen wird die korrekte Anwendung der optischen Grundbegriffe, Formeln, Verfahren und das Analysieren und Darstellen des Lösungswegs überprüft.

Bei Fehlern, bitte Mitteilung an die
Webredaktion der Fakultät IME

© 2022 Technische Hochschule Köln