Course Manual LE

Power Electronics

Version: 2 | Last Change: 13.09.2019 18:23 | Draft: 0 | Status: vom verantwortlichen Dozent freigegeben

- General information

Long name	Power Electronics
Approving CModule	<u>LE BaET</u>
Responsible	Prof. Dr. Christian Dick Professor Fakultät IME
Valid from	summer semester 2022
Level	Bachelor
Semester in the year	summer semester
Duration	Semester
Hours in self-study	60
ECTS	5
Professors	Prof. Dr. Christian Dick Professor Fakultät IME
Requirements	Complex alternating current calculation for linear AC applications (basic areas of electrical engineering) Integral Calculation of Sectionally Defined Functions (Mathematics) Fourier analysis (understanding orthogonal functions for active and reactive power determination)
Language	German, English if necessary

Literature

Mohan; Undeland; Robbins: Power Electronics – Converters, Applications and Design Wiley Verlag, USA

Online Kurs der ETH Zürich: www.ipes.ethz.ch

Final exam

Details

Due to the expected number of participants, the summary examination is planned to take the form of a written examination, in individual cases also a structured oral examination. The exam ensures that each student has reached the L.O. goals individually.

80% of this summary examination is included in the overall grade. The remaining 20% weighting is based on a lab.

cwitching takes place (-			values and time- transient signals. Clean handling of the component equations of passive components for time-transient signals. Understanding of the switched character of the electronics (when which semiconductor conducts), and why switching takes place (-
--------------------------	--	--	--

- Lecture / Exercises

Goal type	Description		current calculations, active and
Knowledge	Basics (components, pulse-width modulation, signal description, steady-state analysis, network perturbations)	understanding of inte	amental reactive power), high gral calculations for functions ourier series as basis for als
	Forced-commutated DC-DC converters (buck converter, boost converter, buck-boost converter, two-quadrant converter, H4 bridge as DC-DC converter)	Accompanying material	lecture scipt, exercise script, Simualation tool for simple circuits with description
	Forced-commutated inverters and rectifiers (H4 bridge as DC-AC converter, three-phase pulse inverter)	Separate exam	No
	Outlook: Thyristor-based power electronics		
Skills	The student has a fundamental judgment as to whether or not power electronics should be used for a particular technical application. The student is aware of the importance of power electronics for automation, energy technology and energy efficiency.		
	The students know how the most important converters work. They are familiar with the terms used to describe and characterise power electronic circuits.		
	The student can analyse and discuss concrete power electronic circuits with regard to efficiency, feedback effects and component costs.		
	The series of toolbox topics necessary for the lecture (THD calculation, semiconductor devices,) can be fully applied by the student.		

Туре

Attendance (h/Wk.)

- Practical training

Learning goals

Goal type	Description
Knowledge	Rectifier circuits, self-commutated converters, evaluation of filter properties
Skills	Handling a simulation tool, circuit design, handling laboratory equipment such as oscilloscopes etc, preparation of technical reports

Expenditure classroom teaching

Туре	Attendance (h/Wk.)
Practical training	1
Tutorial (voluntary)	0

Special requirements

Complex alternating current calculations, active and reactive power (fundamental reactive power), high understanding of integral calculations for functions defined in sections, Fourier series as basis for orthogonality of signals

Accompanying	
material	

Lab documents

Separate exam

Yes

Separate exam **Exam Type** undefined **Details** 1. partial mark: entrance certificate. The student is asked to what extent he/she is prepared and has understood the contents to such an extent that participation makes sense. Good contributions, including good questions, are also assessed. 2nd sub-rating: During the internship the supervisors ask various questions, but especially: "What are you doing right now? The answer goes into the evaluation. 3rd sub-rating: After the internship, an elaboration is prepared and assessed. The interview and the observation of the internship is regarded as an essential form to recognize the competence of the students.

Minimum standard	The students show that they have prepared themselves, that they have understood in advance what the subject of the internship is and that they are actively involved in the internship.

© 2022 Technische Hochschule Köln