Modulhandbuch OMT

Optische Messtechnik

Bachelor Elektrotechnik 2020


PDF Studiengangsverzeichnis Studienverlaufspläne Bachelor Elektrotechnik

Version: 1 | Letzte Änderung: 29.09.2019 15:42 | Entwurf: 0 | Status: vom Modulverantwortlichen freigegeben | Verantwortlich: Gartz

Anerkannte Lehrveran­staltungen OMT_Gartz
Gültig ab Wintersemester 2022/23
Fachsemester 5
Modul ist Bestandteil des StudienschwerpunktsPHO - Photonik
Dauer 1 Semester
ECTS 5
Zeugnistext (de) Optische Messtechnik
Zeugnistext (en) Optical Metrology
Unterrichtssprache deutsch oder englisch
abschließende Modulprüfung Ja
Inhaltliche Voraussetzungen
Handlungsfelder
Forschung: Von Ansätzen der Grundlagenforschung bis hin zur Industrieforschung. Entwicklung: Algorithmen, Software, Verfahren , Geräte, Komponenten und Anlagen.
Qualitätskontrolle von Produkten und Prozessen, Mess- und Prüftechnologien, Zertifizierungsprozesse.
Produktion: Planung, Konzeption, Instandhaltung, Überwachung und Betrieb.
Modulprüfung
Benotet Ja
Konzept Klausuren mit differenzierten Aufgabentypen der Taxonomiestufen Verstehen, Anwenden, Analysieren und Synthetisieren.
D.h., in den Aufgaben müssen die Begriffe, wie CCD, CMOS, Thermische und quantenmechanische Optische Detektoren verstanden und angewendet werden, ebenso wie das Verfahren der Erzeugung eines thermischen Detektorsignals.
Die optischen und elektronischen Zusammenhänge, wie z.B. die quantenmechanische Erzeugung von Elektron-Loch-Paaren, müssen zur Lösung von zu analysierenden optischen Fragestellungen verstanden und angewendet werden können.
Verstandene und erinnerte Formeln und Prinzipien müssen zur Lösung neuer Aufgabentypen umgestellt und kombiniert (synthetisiert) werden.
Frequenz Jedes Semester
Learning Outcomes
ID Learning Outcome
LO1 Was: Die Studierenden können optische Detektoren, Spektroskopieverfahren und Reflektometriesysteme vergleichen, analysieren, beurteilen und bewerten,
Womit: indem sie in Vorträgen die verschiedenen physikalischen Strahlungsdetektions- Verfahren, konkrete Vertreter und den physikalischen Aufbau von Detektoren und Grundlegendes zur optischen Spektroskopie und u.v.m. kennen lernen, sowie in Übungen selbstständig vertiefen.
Indem sie in Praktikumsversuchen die Theorien, eigenen Berechnungen und selbst erstellten Programme durch Experimente verifizieren,
Wozu: um später in Entwicklungsabteilungen von optischen Messtechnikunternehmen Messprobleme zu verstehen, zu analysieren, konstruktive Lösungen zu erarbeiten und zu realisieren. Um als beratende Ingenieure Kundenprobleme zu analysieren und mit am Markt befindlichen Systemen Applikationen zu erstellen, die die optischen Messprobleme lösen oder am Markt befindliche Messsysteme auswählen, beurteilen und bewerten, ob sie zur Lösung geeignet sind.
Kompetenzen
Kompetenz Ausprägung
Finden sinnvoller Systemgrenzen diese Kompetenz wird vermittelt
Abstrahieren diese Kompetenz wird vermittelt
Naturwissenschaftliche Phänomene in Realweltproblemen erkennen und erklären diese Kompetenz wird vermittelt
Erkennen, Verstehen und analysieren technischer Zusammenhänge diese Kompetenz wird vermittelt
MINT Modelle nutzen diese Kompetenz wird vermittelt
Technische Systeme simulieren Voraussetzungen für diese Kompetenz (Wissen,...) werden vermittelt
Technische Systeme analysieren diese Kompetenz wird vermittelt
Technische Systeme entwerfen Voraussetzungen für diese Kompetenz (Wissen,...) werden vermittelt
Technische Systeme prüfen Voraussetzungen für diese Kompetenz (Wissen,...) werden vermittelt
MINT-Grundwissen benennen und anwenden diese Kompetenz wird vermittelt
Informationen beschaffen und auswerten Voraussetzungen für diese Kompetenz (Wissen,...) werden vermittelt
Technische Zusammenhänge darstellen und erläutern Voraussetzungen für diese Kompetenz (Wissen,...) werden vermittelt
Arbeitsergebnisse bewerten Voraussetzungen für diese Kompetenz (Wissen,...) werden vermittelt
Komplexe technische Aufgaben im Team bearbeiten Voraussetzungen für diese Kompetenz (Wissen,...) werden vermittelt
Lernkompetenz demonstrieren diese Kompetenz wird vermittelt
Sich selbst organisieren und reflektieren diese Kompetenz wird vermittelt
Sprachliche und interkulturelle Fähigkeiten anwenden Voraussetzungen für diese Kompetenz (Wissen,...) werden vermittelt
Technische Systeme realisieren diese Kompetenz wird vermittelt

Inhaltliche Voraussetzungen
Handlungsfelder
Forschung: Von Ansätzen der Grundlagenforschung bis hin zur Industrieforschung. Entwicklung: Algorithmen, Software, Verfahren , Geräte, Komponenten und Anlagen.
Qualitätskontrolle von Produkten und Prozessen, Mess- und Prüftechnologien, Zertifizierungsprozesse.
Produktion: Planung, Konzeption, Instandhaltung, Überwachung und Betrieb.
Learning Outcomes
ID Learning Outcome
LO1 Was: Die Studierenden können optische Detektoren, Spektroskopieverfahren und Reflektometriesysteme vergleichen, analysieren, beurteilen und bewerten,
Womit: indem sie in Vorträgen die verschiedenen physikalischen Strahlungsdetektions- Verfahren, konkrete Vertreter und den physikalischen Aufbau von Detektoren und Grundlegendes zur optischen Spektroskopie und u.v.m. kennen lernen, sowie in Übungen selbstständig vertiefen.
Indem sie in Praktikumsversuchen die Theorien, eigenen Berechnungen und selbst erstellten Programme durch Experimente verifizieren,
Wozu: um später in Entwicklungsabteilungen von optischen Messtechnikunternehmen Messprobleme zu verstehen, zu analysieren, konstruktive Lösungen zu erarbeiten und zu realisieren. Um als beratende Ingenieure Kundenprobleme zu analysieren und mit am Markt befindlichen Systemen Applikationen zu erstellen, die die optischen Messprobleme lösen oder am Markt befindliche Messsysteme auswählen, beurteilen und bewerten, ob sie zur Lösung geeignet sind.
Kompetenzen
Kompetenz Ausprägung
Finden sinnvoller Systemgrenzen diese Kompetenz wird vermittelt
Abstrahieren diese Kompetenz wird vermittelt
Naturwissenschaftliche Phänomene in Realweltproblemen erkennen und erklären diese Kompetenz wird vermittelt
Erkennen, Verstehen und analysieren technischer Zusammenhänge diese Kompetenz wird vermittelt
MINT Modelle nutzen diese Kompetenz wird vermittelt
Technische Systeme simulieren Voraussetzungen für diese Kompetenz (Wissen,...) werden vermittelt
Technische Systeme analysieren diese Kompetenz wird vermittelt
Technische Systeme entwerfen Voraussetzungen für diese Kompetenz (Wissen,...) werden vermittelt
Technische Systeme prüfen Voraussetzungen für diese Kompetenz (Wissen,...) werden vermittelt
MINT-Grundwissen benennen und anwenden diese Kompetenz wird vermittelt
Informationen beschaffen und auswerten Voraussetzungen für diese Kompetenz (Wissen,...) werden vermittelt
Technische Zusammenhänge darstellen und erläutern Voraussetzungen für diese Kompetenz (Wissen,...) werden vermittelt
Arbeitsergebnisse bewerten Voraussetzungen für diese Kompetenz (Wissen,...) werden vermittelt
Komplexe technische Aufgaben im Team bearbeiten Voraussetzungen für diese Kompetenz (Wissen,...) werden vermittelt
Lernkompetenz demonstrieren diese Kompetenz wird vermittelt
Sich selbst organisieren und reflektieren diese Kompetenz wird vermittelt
Sprachliche und interkulturelle Fähigkeiten anwenden Voraussetzungen für diese Kompetenz (Wissen,...) werden vermittelt
Technische Systeme realisieren diese Kompetenz wird vermittelt

Typ Vorlesung / Übungen
Separate Prüfung Ja
Exempla­rische inhaltliche Operatio­nalisierung Charakterisieren und Verstehen von Thermischen- und Quantenmechanischen- Optischen Detektoren.
Berechnen des Reflektionsvermögens aus Brechzahl und Schichtdicke;
Charakterisieren von optischen Gittern bezgl. des nutzbaren Spektralbereichs, der Auflösung. Anwendung von optischen Gittern zur berührungslosen Temperaturmessung;
Bestimmung der Schichtdicke aus Spektralen Messungen;
Erkennen und Verstehen des Zeitverhaltens von optischen Detektoren;
Auswählen von Lichtleitern für spezielle Aufgaben der optischen Messtechnik;
Beurteilen der Messgenauigkeit von optischen Messsystemen;
Charakterisieren von verschiedenartigen Spektrometersystemen;
Separate Prüfung
Benotet Nein
Frequenz Einmal im Jahr
Voraussetzung für Teilnahme an Modulprüfung Nein
Konzept In Präsenzübungen und Selbstlernaufgaben werden z.B. die Gittergleichung, das Auflösungsvermögen, der freie nutzbare Spektralbereich und die Extinktion basierend auf den verstandenen optischen Grundprinzipien und Begriffen berechnet.
Es wird überprüft, ob die Grundbegriffe und optischen Prinzipien verstanden wurden und angewendet werden können.
Neue Aufgabentypen werden vorgestellt, die analysiert und gelöst werden müssen, basierend auf den verstanden Prinzipien und Formeln, die dazu umgestellt und kombiniert werden müssen.
Typ Praktikum
Separate Prüfung Ja
Exempla­rische inhaltliche Operatio­nalisierung Messung der Transmissionseigenschaften von Filtern mit Hilfe von Spektrometern;
Kalibrierung des Spektrometers für die Messung von Lichtquellen;
Messung und Besimmung der Schichtdicke und Brechzahl einer dünnen transparenten Schicht;
Vergleich der Messwerte mit theoretischen Werten;
Aufbau eines Photodioden basierten optischen Messsystems;
Messung der Lichtgeschwindigkeit und Diskussion der Messgenauigkeit;
Inbetriebnahme und Justage eines Zweistrahlinterferometers;
Bestimmung der Brechzahl von Luft mit Hilfe eine Zweistrahlinterferometers;
Separate Prüfung
Benotet Nein
Frequenz Einmal im Jahr
Voraussetzung für Teilnahme an Modulprüfung Nein
Konzept In der Vorbesprechung zum Praktikum, dass möglichst in Teamarbeit durchgeführt wird, werden die notwendigen Grundbegriffe abgefragt und das Verständnis der verschieden Versuchsabläufe.
In den Praktikumsprotokollen und den dazugehörigen Besprechungen wird die korrekte Anwendung der optischen Grundbegriffe, Formeln, Verfahren und das Analysieren und Darstellen des Lösungswegs überprüft.

Bei Fehlern, bitte Mitteilung an die
Webredaktion der Fakultät IME

© 2022 Technische Hochschule Köln