Course Manual FEM

Finite element method in electrical engineering

Version: 2 | Last Change: 29.04.2022 18:23 | Draft: 0 | Status: vom verantwortlichen Dozent freigegeben

- General information

Long name	Finite element method in electrical engineering		
Approving CModule	<u>SIM MaET</u>		
Responsible	Prof. Dr. Wolfgang Evers Professor Fakultät IME		
Valid from	summer semester 2021		
Level	Master		
Semester in the year	summer semester		
Duration	Semester		
Hours in self-study	78		
ECTS	5		
Professors	Prof. Dr. Wolfgang Evers Professor Fakultät IME		
Requirements	 Electrostatic: field strength, flux density, dielectrics Electromagnetism: field strength, flux density, flux, magnetic circuits, induced voltage 		
Language	German		
Separate final exam	No		

Literature

Thomas Westermann, Modellbildung und Simulation

Thomas Westermann: Mathematik für Ingenieure

- Lecture / Exercises

earning goals		Special
Goal type	Description	none
Skills	Discretisation of physical problems using the example of an electrostatic arrangement - One-dimensional model - Two-dimensional model - Replacement of partial derivatives	Accomp materia
	by finite differences - Boundary conditions - Setting up the linear system of equations	Separat
	 Different methods for solving the system of equations Result representation with interpolation 	Separate
Skille	 Use of boundary-fitted grids Solving a two-dimensional electrostatic problem with FEM software Exploiting symmetries in the simulation Solving a two-dimensional magnetic problem with FEM software Extending the magnetic problem to include non-linear material properties Extension of the simulation by program-controlled variation of parameters and automatic output of characteristic diagrams with Python 	Exam Ty
Skills	Carry out and critically evaluate FEM simulations on various physical effects	
Expenditure	e classroom teaching	
Туре	Attendance (h/Wk.)	

quirements nying - electronic lecture slides for the lecture - electronic exercise task collection Yes exam exam EN andere a studienbegleitende Prüfungsform

course) Tutorial (voluntary) 0

2

0

Exercises (whole course)

Exercises (shared

Details

Details	The students independently solve tasks in which given physical arrangements are to be calculated with an FEM programme. Subsequently, a report is written in the form of a conference paper. The examinations during the course consist of three tasks with different scope and correspondingly different influence on the grade: 1. Simulation of two electrostatic arrangements. Exploitation of model symmetries. (20 %) 2. Simulation and optimisation of a magnetic arrangement with materials with linear and non-linear magnetisation characteristic. (20 %) 3. Automation of a simulation of a simulation of a magnetic arrangement with Python and calculation of characteristics by parameter variation and output to a diagram. (60 %)
Minimum standard	 Functional simulation with physically meaningful results. Comprehensible presentation of the results in the respective report. Achievement of 50% of the total points to be awarded.

© 2022 Technische Hochschule Köln