Course Manual SOP

Systems on Programmable Chips

Version: 1 | Last Change: 02.08.2019 14:22 | Draft: 0 | Status: vom verantwortlichen Dozent freigegeben

- General information

Long name	Systems on Programmable Chips
Approving CModule	<u>SOP_BaTIN</u>
Responsible	Prof. Dr. Tobias Krawutschke Professor Fakultät IME
Valid from	summer semester 2022
Level	Bachelor
Semester in the year	summer semester
Duration	Semester
Hours in self-study	78
ECTS	5
Professors	Prof. Dr. Tobias Krawutschke Professor Fakultät IME

Literature

Hamblen, Furman: Rapid Prototyping of Digital Systems, Kluwer Academic Publishing

Wakerly: Digital Design: Principles and Practices, Prentice Hall

D. Gajski: Embedded System Design, Springer Verlag New York

U. Meyer-Baese: Digital Signal Processing with Field Programmable Gate Arrays

Final exam

Details	Preparation part: Analysis of a typical task suited for SoPC, Design of a solution (Student alone in examination context) Discussion part: disputation of solution, crafting of selected parts (student under supervision of docent)
Minimum standard	Derivation of important system components and correct mapping to hardware Ability to implement selected components (HW/SW)

Requirements	Fundamentals of digital systems * Design Methods (Boolean Algebra, Automata) * Basic knowledge of digital technology including hardware description language Fundamentals Programming * Hardwareoriented Programming with C * Programming with C * Programming experience * Knowledge and first experiences in reactive programming, especially using interrupts	Exam Type	EN mündliche Prüfung, strukturierte Befragung
Language	Fundamentals of signal processing, esp. digital filters (FIR) German, English if		
Separate final exam	Yes		

- <u>Lecture / Exercises</u>

Goal type	Description
Knowledge	1) Digital system modelling using
	Boolean algebra
	Schematic (using digital basic
	components)
	Finite State Automata (FSA)
	Extended FSA, Statecharts
	Controlflow/Dataflow systems VHDI
	2) Digital technology
	Understanding of typical digital circuits (CMOS technology)
	Understanding, description and
	classification of runtime effects
	Knowledge and variants of
	programmable units (PLD, FPGA)
	3) SoC/SoPC-Systeme
	System construction
	IO access using machine-near
	programming
	Interrupts, alarm
	Programming automata / CFDF
	systems
	Rules to partition hardware and
	software components
	Design of coupling of HW/SW
	components

Expenditure	classroom	teaching
-------------	-----------	----------

Туре	Attendance (h/Wk.)
Lecture	2
Exercises (whole course)	1
Exercises (shared course)	0
Tutorial (voluntary)	2

Special requirements

none

Example models and
Exercise task sheets with solutions Tutorials
\ -

- Practical training

earning go	pals	Special requirem
Goal type	Description	none
Skills	Getting compentencies in analysis, modelling and implementation of the hardware part of an audio signal processing system 1) Analysis of interface to the CoDec and creation of a system reading in and writing out samples (copy-machine) 2) Development of a FIR filter	Accompanying material Separate exam
	working on the samples 3) Development of a simple echo producer working in the time domain	Separate exam
Skills	Getting compentencies in analysis, modelling and implementation of an audio signal processing system	Exam Type
	in software 1) Analysis of interface to the CoDec and creation of a system reading in and writing out samples (copy-machine) 2) Development of a N-stage averaging mean filter working on the samples	Details
	 3) Development of a simple echo producer working in the time domain 4) Measurement and optimization of the system since it reaches the performance limit of standard microcontrollers 	Minimum standard
Skills	Realization of the example system as a HW/SW system with input of parameter values for echo and FIR filter unit 1) System partition HW/SW 2) Protocoll specification between	
	HW and SW components 3) Realization of User Interface (Input of echo and filter parameters, general system control) 4) Realization of protocoll components	
	5) Validation with FPGA Board 6) Comparison of solutions HW / SW / SoPC in report	

Textual description Tutorials Adapted tools e.g. for testing Yes EN praxisnahes Szenario bearbeiten (z.B. im Praktikum) Check of electronically delivered preparations (design files, models, software) Observation of lab work on a real FPGA system Delivery of all required elements in time Sufficient Quality of delivered elements Explanation of components during the lab date Participation in the implementaiton of the systems Report sufficiently elaborated

© 2022 Technische Hochschule Köln