Course Manual DR

Digital Computer

Version: 7 | Last Change: 19.09.2019 11:40 | Draft: 0 | Status: vom verantwortlichen Dozent freigegeben

- General information

Long name	Digital Computer
Approving CModule	<u>DR_BaTIN</u>
Responsible	Prof. Dr. Lothar Thieling Professor Fakultät IME
Valid from	winter semester 2020/21
Level	Bachelor
Semester in the year	winter semester
Duration	Semester
Hours in self-study	60
ECTS	5
Professors	NF Hartung
Requirements	none
Language	German
Separate final exam	Yes

Literature

Urbanski K., Woitowikz R.: Digitaltechnik, 4. Auflage Springer 2004

Beuth K.: Elektronik Bd. 4 Digitaltechnik, Vogel Verlag 2001

Lipp H.M.: Grundlagen der Digitaltechnik, 4. Auflage Oldenbourg 2002

Tanenbaum A. S.; Austin T.. Rechnerarchitektur: Von der digitalen Logik zum Parallelrechner Pearson Deutschland 2014

Final exam

Details

The students should demonstrate the following competencies in a written exam: 1.) Safe handling of concepts and mechanisms. 2.) Analysis of given digital circuits. 3.) Design of digital systems (simple networks, counters, automata) in VHDL based on given textual specifications. 4.) Implementation of high-level language constructs in assembler or vice versa.

- Lecture / Exercises

Goal type	Description
Knowledge	boolean algebra basic functions axioms and laws disjunctive normal form, minterms conjunctive normal form, maxterms systematic simplification
Knowledge	boolean network logic gates, tri-state buffer description forms boolean equation table KV diagram schematic transformations between the forms of description analysis synthesis (including transfer from text to problem solution) don't-care conditions typical networks decoder multiplexer demultiplexer adder
Knowledge	number representation in computer systems dual-code, hexadecimal-code, change of basis two's complement fixed point representation floating point representation ASCII-code
Knowledge	feedback networks flip-flops and latches RS D asynchronous control clock state control edge triggered registers parallel read-write register shift register parallel-serial conversion seria-parallell conversion practice-oriented specifications setup time hold time minimum puls width

Special requirements none Accompanying lecture foils (electronic), material set of exercise (electronic), tool chaine for VHDL-design, set of example-designs, simulator for a simple Von-Neumanncomputer, self-study tutorials for the tool chain and the simulator Separate exam No

Kr	nowledge	synchronous counters the basic idea construction using D flip-flops analysis synthesis specification using VHDL refer VHDL	
Kr	nowledge	finite state machines description of state machines using state transition diagrams (Moore) design of state machines as a problem-solving Implementation using VHDL	
Kr	nowledge	state transition diagrams modeling according to Moore characteristics (determinism, completeness)	
Kr	nowledge	characteristics (determinism,	

Knowledge	programmable logic devices structure the basic idea technology CPLD versus FPGA design tool scematic design entry basic library (gates, in, ou, buffer, mux, decoder, flip-flops) buses hierarchical schematics VHDL design entry detail refer VHL synthesis simulation
Knowledge	structure and mode of operation of a simple computer structure of a Von Neumann computer (registers, arithmetic logic unit, control unit, memory, buses) mode of operation (program execution based on register transfers) concretization of mode of operation (a minimal simulated Von Neumann computer) programming the minimal computer in assembler (simple loops, different addressing modes)
Skills	specifying system behavior (derived from text documents)
Skills	development of problem solutions that can be implemented with boolean networks
Skills	interpretation and convertion of codes
Skills	development of problem solutions that can be implemented with synchronous counters
Skills	development of problem solutions that can be implemented with finite state machines
Skills	explain the operation of a Von Neumann computer
Knowledge	design and operation of a dedicated CPU (eg IA32E- architecture) architectural overview mode of operation (program execution based on register transfers) basics for programming in assembly language

penditure classroor	n teaching
Гуре	Attendance (h/Wk.)
Lecture	2
Exercises (whole course)	1
Exercises (shared course)	1
Tutorial (voluntary)	0

- Practical training

Learning goals		
Goal type	Description	
Skills	development od digital systems	
Skills	explain the system behavior of a Von Neumann computer	
Skills	implement subsystems of a Von Neumann computer	
Skills	implementation of C-code sequences using assembler	
Skills	manage complex tasks as a small team	
Skills	develop problem solutions	

and task n (electronic), for VHD-
n (electronic),
n (electronic),
et of example electronic), for a simple mann- r, self-study or the tool the simulator

Expenditure classroom teaching

Туре	Attendance (h/Wk.)
Practical training	1
Tutorial (voluntary)	0

© 2022 Technische Hochschule Köln