Course Manual PH1

Physics 1

Version: 8 | Last Change: 24.02.2021 16:13 | Draft: 0 | Status: vom verantwortlichen Dozent freigegeben

- General information

Long name	Physics 1	
Approving CModule	PH1_BaET	
Responsible	Prof. Dr. Karl Kohlhof Professor Fakultät IME	
Valid from	summer semester 2021	
Level	Bachelor	
Semester in the year	summer semester	
Duration	Semester	
Hours in self-study	60	
ECTS	5	
Professors	Prof. Dr. Karl Kohlhof Professor Fakultät IME	
Requirements	Functions (sin, cos, exp, ln) Equations and systems of equations (linear, quadratic) Analysis (differential and integral calculus) Linear algebra (2-/3- dim vector calculation)	
Language	German	
Separate final exam	Yes	

Literature

Tippler, Mosca; Physik (Springer Spektrum)

Giancoli; Physik Lehr- und Übungsbuch (Pearson)

Halliday, Resnick, Walker; Halliday Physik (Wiley-VCH)

Final exam

Details	Written examination, oral examination only in individual cases, with
	the following elements: - Multiple choice and
	assignment questions
	to query fundamental
	concepts, relationships
	and analogies
	- Free-text answers to
	query further
	knowledge and the
	basic understanding of
	physical relationships
	- Preparation of
	sketches to test further
	understanding
	- Application-oriented
	text tasks, whose
	solutions make it
	necessary to analyze
	and reduce the physical
	problems, select a
	suitable model and
	apply it mathematically.
Minimum standard	50 % of the questions
	and tasks correctly
	solved
Exam Type	EN Klausur
Exam Type	EN Klausur

- Lecture / Exercises

Goal type	Description	none	
Knowledge	Mechanics of rigid bodies - Physical quantities and units		
	 Kinematic (temporal description of linear and rotary motion) Analogy of linear and rotary motion One-dimensional motion Multidimensional motion and projectile motion Dynamics (forces, apparent forces, frictional forces, Newton's axioms) 	Accompanying material	Presentation slides for the lecture Collection of exercise tasks with solutions Questionnaire to prepare the exam Links to Internet resources with basic information
	- Work, energy, energy conservation - Momentum, momentum	Separate exam	No
	 Angular momentum and its conservation Oscillations of mass-spring systems (free/forced, undamped/damped) Resonance behavior, quality factor, resonance curve Analogy of mechanical and electrical oscillation systems Mechanism of deformable body Elastic and plastic deformation Tension, pressure Mechanics of fluids and gases (Bernoulli) 		
Skills	Recognize and apply analogies, e.g. linear and rotary motion Derive balance of power and set up equations of motion Derive energy balances and determine the states of motion from energy conservation Derive momentum balances and determine motion states from the momentum conservation Analyze simple physical problems, apply physical models and calculate with them		
xpenditure	classroom teaching		
Туре	Attendance (h/Wk.)		

© 2022 Technische Hochschule Köln