Modul

MA1 - Mathematik 1

Bachelor Elektrotechnik 2020


PDF Studiengangsverzeichnis Studienverlaufspläne Bachelor Elektrotechnik

Version: 3 | Letzte Änderung: 24.09.2019 15:46 | Entwurf: 0 | Status: vom Modulverantwortlichen freigegeben | Verantwortlich: Bold

Anerkannte Lehrveran­staltungen MA1_Bold, MA1_Weigand
Fachsemester 1
Dauer 1 Semester
ECTS 10
Zeugnistext (de) Mathematik 1
Zeugnistext (en) Mathematics 1
Unterrichtssprache deutsch oder englisch
abschließende Modulprüfung Ja
Inhaltliche Voraussetzungen
Handlungsfelder
Forschung: Von Ansätzen der Grundlagenforschung bis hin zur Industrieforschung. Entwicklung: Algorithmen, Software, Verfahren , Geräte, Komponenten und Anlagen.
Qualitätskontrolle von Produkten und Prozessen, Mess- und Prüftechnologien, Zertifizierungsprozesse.
Modulprüfung
Benotet Ja
Frequenz Jedes Semester
Prüfungskonzept

Die studiengangsbegleitende Übungen erfordert das Lösen von mathematischen Übungsaufgaben. Ist die ULP bestanden erfolgt die summarische Prüfung in Form einer Klausur. Alternativ zur ULP kann eine benotete schriftliche Prüfung in der Mitte des Semesters durchgeführt werden und als Zulassung zur summarischen Prüfung dienen.

Learning Outcomes
MA1-LO1 - Mathematisches Denken
WAS:
Die Studierenden sind in der Lage zu erkennen, welche Art von Fragen in der Mathematik behandelt werden und die Arten von Antworten, die die Mathematik geben kann. Sie sind in der Lage, selbst solche Fragen zu stellen.

(Studierende sind in der Lage Wissen zu erkennen welche Art von Fragen, die in der Mathematik behandelt werden, und die Arten von Antworten, die die Mathematik geben kann und kann, und besitzen die Fähigkeit, solche Fragen zu stellen. Dazu gehört die Anerkennung mathematischer Konzepte und das Verständnis ihres Umfangs und ihrer Grenzen sowie die Erweiterung des Umfangs durch Abstraktion und Verallgemeinerung der Ergebnisse. Dazu gehört auch das Verständnis der Sicherheit, die mathematische Überlegungen bieten können.)

WOMIT:
In der Vorlesung werden die vielfältigen Anwendungsmöglichkeiten (aber auch die Grenzen) der Analysis und der linearen Algebra im Bereich der Elektrotechnik dargestellt.

WOZU:
Die Studierenden erkennen die Nützlichkeit mathematischer Konzepte in verschiedenen bekannten Gebieten und Anwendungen und sowie in gänzlich neuen Kontexten.
MA1-LO2 - Mathematisches Schlussfolgern
WAS:
Die Studierenden sind in der Lage eine vorgegeben mathematische Argumentationen zu verstehen und zu bewerten sowie selbständig logische Schlüsse zu ziehen. Dies beinhaltet auch die Fähigkeit verschiedene mathematischen Aussagen (z.B. Definition, Äquivalenz, Folgerung usw.) zu unterscheiden.

WOMIT:
In der Vorlesung wird mathematisches Argumentieren dargestellt indem Ergebnisse nachgewiesen werden, bestimmte Annahmen begründet oder eine Methode zur Lösung eines Problems ausgewählt wird. Dabei wird den Studierenden der Prozess der Entstehung und des Denkens hinter der Theorie demonstriert und die Begründung und Ideen die hinter den Definitionen und Sätzen steht erläutert.

WOZU:
Studierende können bekannte mathematische Argumentationen in einem Anwendungskontext verstehen. Sie können einfache Plausibiltätchecks bei den Ergebnissen eigener Programme durchführen. Sie können sich weitere notwendige mathematische Kenntnisse und Fertigkeiten im Anwendungskontext aneignen.
MA1-LO3 - Problemlösen
WAS:
Studierende sind in der Lage mathematische Aufgabenstellungen (ähnlich den in der Vorlesung behandelten der Analysis und linearen Algebra) in unterschiedlichen Kontexten zu erkennen, Problemstellungen zu formulieren und diese mit den erlernten Methoden zu lösen.

WOMIT:
In der Vorlesung und Übung werden verschiedene Problemlösungsstragien vorgestellt und angewandt (beispielsweise durch Analogien, Verwendung zusätzlicher Informationen).

WOZU:
Studierende können Aufgabenstellungen (ähnlich zu denen die im Modul behandelt werden) erkennen und lösen. Sie sollen in die Lage versetzt werden, später auch mit mehr offenen, allgemeineren oder entwicklungsorientierten Fragestellungen umzugehen.
MA1-LO4 - Kommunikation
WAS:
Studierenden können mathematische Aussagen (mündlich, schriftlich oder anderweitig) (aus dem Bereich Analysis einer Veränderlichen und der linearen Algebra) anderer verstehen und sich mathematisch auf unterschiedliche Weise auszudrücken.

WOMIT:
In der Vorlesung wird die korrekte Kommunikation mathematischer Aussagen demonstriert und den Studierenden Lernmaterialien zum Selbststudium bereit gestellt. Die Studierenden üben dies indem sie Aufgaben bearbeiten und Fragestellungen und ihre Lösungsansätze diskutieren und verschriftlichen.

WOZU: Studierende verstehen ingenieurswissenschaftliche Literatur, die zur Beschreibung ihrer Modelle und Methoden mathematische Sprache verwendet und können eigene Argumente oder Methoden präzise kommunizieren.
MA1-LO5 - Symbole und Formalismen
WAS:
Studierende sind in der Lage symbolische und formale mathematische Sprache und ihre Beziehung zur natürlichen Sprache sowie die Übersetzung zwischen beiden zu verstehen. Dies beinhaltet auch die Fähigkeit, symbolische Anweisungen und Ausdrücke entsprechend den Regeln zu verwenden und zu manipulieren.

WOMIT:
In der Vorlesung wird die korrekte Verwendung von Symbolen und der formale Sprache der Mathematik demonstriert. Studierende üben dies an Hand von Aufgabe individuell oder in Gruppenarbeit.

WOZU:
Studierende können Symbole und Notationen in Situationen und Kontexten verwenden, die ihnen nicht ganz vertraut sind und in denen unterschiedliche Notationen verwendet werden.
MA1-LO6 - Mathematische Inhalte
WAS:
Studierende sind in der Lage, Aufgabenstellungen aus den Bereichen Mathematische Grundlagen, Analysis bis zum Begriff des Grenzwertes, Lineare Algebra, einschließlich solcher, die aus einem realweltlichen Bezug entnommen sind, zu lösen.

WOMIT:
In der Vorlesung werden die benötigten mathematischen Inhalte vorgestellt. In den Übungen werden die Studierenden angehalten, diese Inhalte auf die gegebenen Aufgaben anzuwenden.

WOZU:
Studierende sind in der Lage, in berufspraktischen ingenieurmäßigen Fragestellungen die entsprechenden mathematischen Fragestellungen zu erkennen und diese mit den vermittelten Methoden zu bearbeiten.
Kompetenzen
Vermittelte Voraussetzungen für Kompetenzen
MINT Modelle nutzen
Technische Systeme simulieren
Technische Systeme analysieren
Technische Systeme entwerfen
Technische Systeme realisieren
Arbeitsergebnisse bewerten
Komplexe technische Aufgaben im Team bearbeiten
Sich selbst organisieren und reflektieren

Vermittelte Kompetenzen
Informationen beschaffen und auswerten
Abstrahieren
Naturwissenschaftliche Phänomene in Realweltproblemen erkennen und erklären

Inhaltliche Voraussetzungen
Handlungsfelder
Forschung: Von Ansätzen der Grundlagenforschung bis hin zur Industrieforschung. Entwicklung: Algorithmen, Software, Verfahren , Geräte, Komponenten und Anlagen.
Qualitätskontrolle von Produkten und Prozessen, Mess- und Prüftechnologien, Zertifizierungsprozesse.
Learning Outcomes
MA1-LO1 - Mathematisches Denken
WAS:
Die Studierenden sind in der Lage zu erkennen, welche Art von Fragen in der Mathematik behandelt werden und die Arten von Antworten, die die Mathematik geben kann. Sie sind in der Lage, selbst solche Fragen zu stellen.

(Studierende sind in der Lage Wissen zu erkennen welche Art von Fragen, die in der Mathematik behandelt werden, und die Arten von Antworten, die die Mathematik geben kann und kann, und besitzen die Fähigkeit, solche Fragen zu stellen. Dazu gehört die Anerkennung mathematischer Konzepte und das Verständnis ihres Umfangs und ihrer Grenzen sowie die Erweiterung des Umfangs durch Abstraktion und Verallgemeinerung der Ergebnisse. Dazu gehört auch das Verständnis der Sicherheit, die mathematische Überlegungen bieten können.)

WOMIT:
In der Vorlesung werden die vielfältigen Anwendungsmöglichkeiten (aber auch die Grenzen) der Analysis und der linearen Algebra im Bereich der Elektrotechnik dargestellt.

WOZU:
Die Studierenden erkennen die Nützlichkeit mathematischer Konzepte in verschiedenen bekannten Gebieten und Anwendungen und sowie in gänzlich neuen Kontexten.
MA1-LO2 - Mathematisches Schlussfolgern
WAS:
Die Studierenden sind in der Lage eine vorgegeben mathematische Argumentationen zu verstehen und zu bewerten sowie selbständig logische Schlüsse zu ziehen. Dies beinhaltet auch die Fähigkeit verschiedene mathematischen Aussagen (z.B. Definition, Äquivalenz, Folgerung usw.) zu unterscheiden.

WOMIT:
In der Vorlesung wird mathematisches Argumentieren dargestellt indem Ergebnisse nachgewiesen werden, bestimmte Annahmen begründet oder eine Methode zur Lösung eines Problems ausgewählt wird. Dabei wird den Studierenden der Prozess der Entstehung und des Denkens hinter der Theorie demonstriert und die Begründung und Ideen die hinter den Definitionen und Sätzen steht erläutert.

WOZU:
Studierende können bekannte mathematische Argumentationen in einem Anwendungskontext verstehen. Sie können einfache Plausibiltätchecks bei den Ergebnissen eigener Programme durchführen. Sie können sich weitere notwendige mathematische Kenntnisse und Fertigkeiten im Anwendungskontext aneignen.
MA1-LO3 - Problemlösen
WAS:
Studierende sind in der Lage mathematische Aufgabenstellungen (ähnlich den in der Vorlesung behandelten der Analysis und linearen Algebra) in unterschiedlichen Kontexten zu erkennen, Problemstellungen zu formulieren und diese mit den erlernten Methoden zu lösen.

WOMIT:
In der Vorlesung und Übung werden verschiedene Problemlösungsstragien vorgestellt und angewandt (beispielsweise durch Analogien, Verwendung zusätzlicher Informationen).

WOZU:
Studierende können Aufgabenstellungen (ähnlich zu denen die im Modul behandelt werden) erkennen und lösen. Sie sollen in die Lage versetzt werden, später auch mit mehr offenen, allgemeineren oder entwicklungsorientierten Fragestellungen umzugehen.
MA1-LO4 - Kommunikation
WAS:
Studierenden können mathematische Aussagen (mündlich, schriftlich oder anderweitig) (aus dem Bereich Analysis einer Veränderlichen und der linearen Algebra) anderer verstehen und sich mathematisch auf unterschiedliche Weise auszudrücken.

WOMIT:
In der Vorlesung wird die korrekte Kommunikation mathematischer Aussagen demonstriert und den Studierenden Lernmaterialien zum Selbststudium bereit gestellt. Die Studierenden üben dies indem sie Aufgaben bearbeiten und Fragestellungen und ihre Lösungsansätze diskutieren und verschriftlichen.

WOZU: Studierende verstehen ingenieurswissenschaftliche Literatur, die zur Beschreibung ihrer Modelle und Methoden mathematische Sprache verwendet und können eigene Argumente oder Methoden präzise kommunizieren.
MA1-LO5 - Symbole und Formalismen
WAS:
Studierende sind in der Lage symbolische und formale mathematische Sprache und ihre Beziehung zur natürlichen Sprache sowie die Übersetzung zwischen beiden zu verstehen. Dies beinhaltet auch die Fähigkeit, symbolische Anweisungen und Ausdrücke entsprechend den Regeln zu verwenden und zu manipulieren.

WOMIT:
In der Vorlesung wird die korrekte Verwendung von Symbolen und der formale Sprache der Mathematik demonstriert. Studierende üben dies an Hand von Aufgabe individuell oder in Gruppenarbeit.

WOZU:
Studierende können Symbole und Notationen in Situationen und Kontexten verwenden, die ihnen nicht ganz vertraut sind und in denen unterschiedliche Notationen verwendet werden.
MA1-LO6 - Mathematische Inhalte
WAS:
Studierende sind in der Lage, Aufgabenstellungen aus den Bereichen Mathematische Grundlagen, Analysis bis zum Begriff des Grenzwertes, Lineare Algebra, einschließlich solcher, die aus einem realweltlichen Bezug entnommen sind, zu lösen.

WOMIT:
In der Vorlesung werden die benötigten mathematischen Inhalte vorgestellt. In den Übungen werden die Studierenden angehalten, diese Inhalte auf die gegebenen Aufgaben anzuwenden.

WOZU:
Studierende sind in der Lage, in berufspraktischen ingenieurmäßigen Fragestellungen die entsprechenden mathematischen Fragestellungen zu erkennen und diese mit den vermittelten Methoden zu bearbeiten.
Kompetenzen
Kompetenz Ausprägung
Informationen beschaffen und auswerten Vermittelte Kompetenzen
Abstrahieren Vermittelte Kompetenzen
Naturwissenschaftliche Phänomene in Realweltproblemen erkennen und erklären Vermittelte Kompetenzen
MINT Modelle nutzen Vermittelte Voraussetzungen für Kompetenzen
Technische Systeme simulieren Vermittelte Voraussetzungen für Kompetenzen
Technische Systeme analysieren Vermittelte Voraussetzungen für Kompetenzen
Technische Systeme entwerfen Vermittelte Voraussetzungen für Kompetenzen
Technische Systeme realisieren Vermittelte Voraussetzungen für Kompetenzen
Arbeitsergebnisse bewerten Vermittelte Voraussetzungen für Kompetenzen
Komplexe technische Aufgaben im Team bearbeiten Vermittelte Voraussetzungen für Kompetenzen
Sich selbst organisieren und reflektieren Vermittelte Voraussetzungen für Kompetenzen
undefined undefined

Exempla­rische inhaltliche Operatio­nalisierung

Bearbeitung von Aufgaben aus den relevanten Gebieten der Mathematik
Aussagen und Mengen
Funktionen
Grenzwerte
Komplexe Zahlen
Lineare Algebra

Separate Prüfung
Benotet Ja
Frequenz Einmal im Jahr
Gewicht 25
Bestehen notwendig Ja
Voraussetzung für Teilnahme an Modulprüfung Ja
Prüfungskonzept

Präsenzübung und Selbstlernaufgaben


© 2022 Technische Hochschule Köln