Modul

FG - Feldbus Grundlagen

Bachelor Technische Informatik 2020


PDF Studiengangsverzeichnis Studienverlaufspläne Bachelor Technische Informatik

Version: 1 | Letzte Änderung: 09.09.2019 17:03 | Entwurf: 0 | Status: vom Modulverantwortlichen freigegeben | Verantwortlich: Bartz

Anerkannte Lehrveran­staltungen FG_Bartz
Modul ist Bestandteil des StudienschwerpunktsES - Eingebettete Systeme
Dauer 1 Semester
ECTS 5
Zeugnistext (de) Feldbus Grundlagen
Zeugnistext (en) Introduction to Fieldbus Systems
Unterrichtssprache deutsch
abschließende Modulprüfung Ja
Inhaltliche Voraussetzungen
DR -
Digitalrechner
Binäre Logik; Zahlendarstellung binär, hexadezimal, dezimal; Zustands-Übergangs-Diagramm
Aufbau eines Micro-Controllers; C-Programmierung für eine Target-Plattform
EG -
Elektrotechnische Grundlagen für die Technische Informatik
Spannung, Strom, Widerstand;
Kondensator, Spule, Übertrager
Handlungsfelder
Systeme zur Verarbeitung, Übertragung und Speicherung von Informationen für technische Anwendungen planen, realisieren und integrieren
Anforderungen, Konzepte und Systeme analysieren und bewerten
Informationstechnische Systeme und Prozesse organisieren und betreiben
Modulprüfung
Benotet Ja
Frequenz Jedes Semester
Prüfungskonzept

schriftliche Prüfung (Klausur)

Learning Outcomes
LO1 - Die Studierenden besitzen grundlegende Kenntnisse über Kommunikationsmechanismen im Feldbereich.
Die Studierenden besitzen Kenntnisse der wichtigsten Netzwerk-Topologien, der Prinzipien des ISO/OSI Modells und der Aufgaben der unteren OSI-Layer. Sie kennen die wesentlichen Aufgaben des Physical und des Data Link Layer und die wichtigsten Buszugriffs- und Datensicherungs-Verfahren im Feldbereich.
Sie besitzen Detail-Kenntnisse der Eigenschaften sowie der Übertragungsprotokolle von Netzen nach CAN-Standard.
Die Studierenden besitzen die Fähigkeit, die Stärken und Schwächen verschiedener Aspekte der OSI-Layer 1 und 2 zu beurteilen, Kommunikationslösungen auf Basis von CAN zu planen und zu implementieren, CAN Kommunikation mit einem embedded System zu implementieren sowie Sensoren und Aktoren von einem Programm aus anzusprechen.
Sie besitzen Übung im Umgang mit Themen, die viel Detail-Informationen beinhalten. Die Studierenden besitzen Erfahrungen mit Teamarbeit (im Praktikum).
Die Studierenden besitzen praktische Erfahrungen im Umgang mit einem Micro-Controller, in der Implementierung von CAN Kommunikation auf Basis eines Micro-Controllers sowie in der Nutzung von Sensoren und Aktoren in einem embedded System.
Kompetenzen

Vermittelte Kompetenzen
In Systemen denken
fachliche Probleme abstrahieren und formalisieren
Konzepte und Methoden der Informatik, Mathematik und Technik kennen und anwenden
Systeme analysieren
Systeme entwerfen
Systeme prüfen
Typische Werkzeuge, Standards und Best Practices der industriellen Praxis kennen und einsetzen

Inhaltliche Voraussetzungen
DR -
Digitalrechner
Binäre Logik; Zahlendarstellung binär, hexadezimal, dezimal; Zustands-Übergangs-Diagramm
Aufbau eines Micro-Controllers; C-Programmierung für eine Target-Plattform
EG -
Elektrotechnische Grundlagen für die Technische Informatik
Spannung, Strom, Widerstand;
Kondensator, Spule, Übertrager
Handlungsfelder
Systeme zur Verarbeitung, Übertragung und Speicherung von Informationen für technische Anwendungen planen, realisieren und integrieren
Anforderungen, Konzepte und Systeme analysieren und bewerten
Informationstechnische Systeme und Prozesse organisieren und betreiben
Learning Outcomes
LO1 - Die Studierenden besitzen grundlegende Kenntnisse über Kommunikationsmechanismen im Feldbereich.
Die Studierenden besitzen Kenntnisse der wichtigsten Netzwerk-Topologien, der Prinzipien des ISO/OSI Modells und der Aufgaben der unteren OSI-Layer. Sie kennen die wesentlichen Aufgaben des Physical und des Data Link Layer und die wichtigsten Buszugriffs- und Datensicherungs-Verfahren im Feldbereich.
Sie besitzen Detail-Kenntnisse der Eigenschaften sowie der Übertragungsprotokolle von Netzen nach CAN-Standard.
Die Studierenden besitzen die Fähigkeit, die Stärken und Schwächen verschiedener Aspekte der OSI-Layer 1 und 2 zu beurteilen, Kommunikationslösungen auf Basis von CAN zu planen und zu implementieren, CAN Kommunikation mit einem embedded System zu implementieren sowie Sensoren und Aktoren von einem Programm aus anzusprechen.
Sie besitzen Übung im Umgang mit Themen, die viel Detail-Informationen beinhalten. Die Studierenden besitzen Erfahrungen mit Teamarbeit (im Praktikum).
Die Studierenden besitzen praktische Erfahrungen im Umgang mit einem Micro-Controller, in der Implementierung von CAN Kommunikation auf Basis eines Micro-Controllers sowie in der Nutzung von Sensoren und Aktoren in einem embedded System.
Kompetenzen
Kompetenz Ausprägung
In Systemen denken Vermittelte Kompetenzen
fachliche Probleme abstrahieren und formalisieren Vermittelte Kompetenzen
Konzepte und Methoden der Informatik, Mathematik und Technik kennen und anwenden Vermittelte Kompetenzen
Systeme analysieren Vermittelte Kompetenzen
Systeme entwerfen Vermittelte Kompetenzen
Systeme prüfen Vermittelte Kompetenzen
Typische Werkzeuge, Standards und Best Practices der industriellen Praxis kennen und einsetzen Vermittelte Kompetenzen

Exempla­rische inhaltliche Operatio­nalisierung

Topologien: PzP, Linie, Ring, Stern
Notationen: Dienstbeschreibung, Sequenzdiaramme, Zustandsdiagramme (Mealy)
Elemente des ISO/OSI Modells: Layer, Kapselung, Funktionen, Dienste (PeerToPeer, lokal), PDU-SDU-PCI-ICI, Verbindung
Leitungscodes: digital (NRZ, PRZ, BiPhaseL, DPLM,...), analog (ASK, FSK, PSK, ...)
RS-232, RS-485
Datensicherung: Parity, Blocksicherung, Checksum, CRC, ...
Zugriffsverfahren: Master/Slave, Token, CSMA/CD, CSMA/CA, ...
Controller Area Network (CAN) als Beispiel

Separate Prüfung

keine

Exempla­rische inhaltliche Operatio­nalisierung

Basis: gängiger Micro-Controller mit Entwicklungsumgebung
Basis: Sensorik und Aktorik mit entsprechenden elektrischen Schnittstellen zum Micro-Controller
Bsp.Aufgabe: Sensordaten erfassen und per Feldbus versenden
Bsp.Aufgabe: per Feldbus empfangene Stellwerte an Aktor leiten

Separate Prüfung
Benotet Nein
Frequenz undefined
Voraussetzung für Teilnahme an Modulprüfung Ja
Prüfungskonzept

erfolgreiche Durchführung der Praktikumsaufgaben


© 2022 Technische Hochschule Köln