Technology Arts Sciences TH Köln

Course FEM - Finite element method in electrical engineering

Version: 2 | Last Change: 29.04.2022 18:23 | Draft: 0 | Status: vom verantwortlichen Dozent freigegeben

A General information

Long name	Finite element method in electrical engineering
Approving CModule	<u>SIM MaET</u>
Responsible	Prof. Dr. Wolfgang Evers Professor Fakultät IME
Level	Master
Semester in the year	summer semester
Duration	Semester
Hours in self-study	78
ECTS	5
Professors	Prof. Dr. Wolfgang Evers Professor Fakultät IME
Requirements	 Electrostatic: field strength, flux density, dielectrics Electromagnetism: field strength, flux density, flux, magnetic circuits, induced voltage
Language	German
Separate final exam	No

<u>Lecture / Exercises</u>

Learning goals

Skills

Discretisation of physical problems using the example of an electrostatic arrangement

- One-dimensional model
- Two-dimensional model
- Replacement of partial derivatives by finite differences
- Boundary conditions
- Setting up the linear system of equations
- Different methods for solving the system of equations
- Result representation with interpolation
- Use of boundary-fitted grids
- Solving a two-dimensional electrostatic problem with FEM software
- Exploiting symmetries in the simulation
- Solving a two-dimensional magnetic problem with FEM software
- Extending the magnetic problem to include non-linear material properties
- Extension of the simulation by program-controlled variation of parameters and automatic output of characteristic diagrams with Python

Carry out and critically evaluate FEM simulations on various physical effects

Expenditure classroom teaching

Туре	Attendance (h/Wk.)
Lecture	2
Exercises (whole course)	2
Exercises (shared course)	0
Tutorial (voluntary)	0

Separate exam

Exam Type

other course-related type of test

Details

The students independently solve tasks in which given physical arrangements are to be calculated with an FEM programme. Subsequently, a report is written in the form of a conference paper.

The examinations during the course consist of three tasks with different scope and correspondingly different influence on the grade:

1. Simulation of two electrostatic arrangements. Exploitation of model symmetries. (20 %)

2. Simulation and optimisation of a magnetic arrangement with materials with linear and non-linear magnetisation characteristic. (20 %)

3. Automation of a simulation of a magnetic arrangement with Python and calculation of characteristics by parameter variation and output to a diagram. (60 %)

Translated with www.DeepL.com/Translator (free version)

Minimum standard

- Functional simulation with physically meaningful results.
- Comprehensible presentation of the results in the respective report.
- Achievement of 50% of the total points to be awarded.

© 2022 Technische Hochschule Köln