

TH Köln

Course

GSP - Fundamentals in System Programming

Version: 2 | Last Change: 16.09.2019 10:26 | Draft: 0 | Status: vom verantwortlichen Dozent freigegeben

General information

Long name	Fundamentals in System Programming
Approving CModule	GSP BaTIN
Responsible	Prof. Dr. Lothar Thieling Professor Fakultät IME
Level	Bachelor
Semester in the year	summer semester
Duration	Semester
Hours in self-study	60
ECTS	5
Professors	Prof. Dr. Lothar Thieling Professor Fakultät IME
Requirements	basic skills in procedural programming structure and mode of operation of a simple computer basics in digital systems finite state machines and state transition diagrams
Language	German
Separate final exam	Yes

Final exam

Details

The students should demonstrate the following competencies in a written exam: 1.) Safe handling of basic concepts and mechanisms. 2.) Programming under C. 3.) Development of simple hardware drivers. 4.) Development of problem solutions using a microcontroller and real-time operating system.

Minimum standard

At least 50% of the total number of points

Exam Type

The students should demonstrate the following competencies in a written exam: 1.) Safe handling of basic concepts and mechanisms. 2.)

Programming under C. 3.) Development of simple hardware drivers. 4.) Development of problem solutions using a microcontroller and real-time operating system.

Lecture / Exercises

Learning goals

Knowledge

basics of C-programming constants, variable,s data types expressions, statements, control structures preprocessor expressions pointers and pointer arithmetic array, structures

funtions

standard libraries

multi-file programs with access to libraries

software development tools

compiler

linker

debugger

simulator

hardware-related I/O programming in C

functioning of digital ports

access to digital ports

memory-mapped I/O

isolated I/O

access to I/O ports using pointers

access to I/O ports using driver libraries

implementation of driver libraries in C

bit-wise I/O and analysis of data using C

programming applications for measurement and control in C implementation of finite state machines in C (mealy and moore) optimization of cyclic queries on I/O-data

real-time operating system

requirements and comparison to "normal" operating systems

cooperative and preemtive multitasking

priority and states of a task

mutex, semaphores

event-driven multitasking

I/O interfaces of a computer system and its use by means of C				
digital ports				
timer/counter (pulse width modulation, cyclic interrupt generation)				
analog-to-digital converter				
serial port				
using the I/O interfaces from C				
interrupts				
interrupt sources and types (external, internal, hardware, software)				
nterrupt management				
nterupt vector table				
interrupt service routine				
time sequence of the interrupt handling				
mechanisms for handling concurrent interrupts				
prioritization				
interruption				
problem specific use of these mechanisms				
use of interrupt driven I/O interfaces in C				
C runtime system				
subroutine call in assembler				
stack and assembler instructions for stack manipulation				
program state backup and recovery using stack				
passing parameters to C-function using stack				
managing local variables using stack				
dynamic behavior of the stack				
interpretation of the stack contents using a debugger				
Skills				
explain the operation of a mikrocontroller-system (hardware and real-time operating system)				
interpretation of detailed technical specifications of the I/O interfaces, so that meaningful configurations can be created				
implementation of C driver libraries for various I/O interfaces including the interrupt support				
specifying system behavior (derived from text documents)				
development of problem solutions for measurement and control, which can be realized in C				
describe and analyze the C runtime system				
Expenditure classroom teaching				

Attendance (h/Wk.)

intertask communication via queues deadlocks and race conditions

Туре

Lecture	2	
Exercises (whole course)	1	
Exercises (shared course)	1	
Tutorial (voluntary)	0	

Separate exam

none

Practical training

Learning goals

Skills

refer to "Vorlesung/Übung->Lernziele->Fertigkeiten"

targeted use of the software development environment

manage complex tasks as a small team

development of problem solutions for measurement and control, which can be realized in C using mikrocontroller and real-time operating systems

Expenditure classroom teaching

Туре	Attendance (h/Wk.)
Practical training	1
Tutorial (voluntary)	0

Separate exam

none