
Course
GSP - Fundamentals in System Programming

Version: 2 | Last Change: 16.09.2019 10:26 | Draft: 0 | Status: vom verantwortlichen Dozent freigegeben

General information

Long name Fundamentals in System Programming

Approving CModule GSP_BaTIN

Responsible Prof. Dr. Lothar Thieling
Professor Fakultät IME

Level Bachelor

Semester in the year summer semester

Duration Semester

Hours in self-study 60

ECTS 5

Professors Prof. Dr. Lothar Thieling
Professor Fakultät IME

Requirements basic skills in procedural programming

structure and mode of operation of a simple computer

basics in digital systems

finite state machines and state transition diagrams

Language German

Separate final exam Yes

Final exam

Details

The students should demonstrate the following competencies in a written exam: 1.) Safe handling of basic concepts and mechanisms. 2.)

Programming under C. 3.) Development of simple hardware drivers. 4.) Development of problem solutions using a microcontroller and real-time

operating system.

Minimum standard

file:///C:/Users/rene/OneDrive/Dokumente/Arbeit/THK/Gremien/F07-Lehre/Daten/Web/html_pdf/M_GSP_BaTIN2020.html

At least 50% of the total number of points

Exam Type

The students should demonstrate the following competencies in a written exam: 1.) Safe handling of basic concepts and mechanisms. 2.)

Programming under C. 3.) Development of simple hardware drivers. 4.) Development of problem solutions using a microcontroller and real-time

operating system.

Lecture / Exercises

Learning goals

Knowledge

basics of C-programming

constants, variable,s data types

expressions, statements, control structures

preprocessor expressions

pointers and pointer arithmetic

array, structures

funtions

standard libraries

multi-file programs with access to libraries

software development tools

compiler

linker

debugger

simulator

hardware-related I/O programming in C

functioning of digital ports

access to digital ports

memory-mapped I/O

isolated I/O

access to I/O ports using pointers

access to I/O ports using driver libraries

implementation of driver libraries in C

bit-wise I/O and analysis of data using C

programming applications for measurement and control in C

implementation of finite state machines in C (mealy and moore)

optimization of cyclic queries on I/O-data

real-time operating system

requirements and comparison to "normal" operating systems

cooperative and preemtive multitasking

priority and states of a task

mutex, semaphores

event-driven multitasking

intertask communication via queues

deadlocks and race conditions

I/O interfaces of a computer system and its use by means of C

digital ports

timer/counter (pulse width modulation, cyclic interrupt generation)

analog-to-digital converter

serial port

using the I/O interfaces from C

interrupts

interrupt sources and types (external, internal, hardware, software)

interrupt management

interupt vector table

interrupt service routine

time sequence of the interrupt handling

mechanisms for handling concurrent interrupts

prioritization

interruption

problem specific use of these mechanisms

use of interrupt driven I/O interfaces in C

C runtime system

subroutine call in assembler

stack and assembler instructions for stack manipulation

program state backup and recovery using stack

passing parameters to C-function using stack

managing local variables using stack

dynamic behavior of the stack

interpretation of the stack contents using a debugger

Skills

explain the operation of a mikrocontroller-system (hardware and real-time operating system)

interpretation of detailed technical specifications of the I/O interfaces, so that meaningful configurations can be created

implementation of C driver libraries for various I/O interfaces including the interrupt support

specifying system behavior (derived from text documents)

development of problem solutions for measurement and control, which can be realized in C

describe and analyze the C runtime system

Expenditure classroom teaching

Type Attendance (h/Wk.)

Lecture 2

Exercises (whole course) 1

Exercises (shared course) 1

Tutorial (voluntary) 0

Separate exam

none

Practical training

Learning goals

Skills

refer to "Vorlesung/Übung->Lernziele->Fertigkeiten"

targeted use of the software development environment

manage complex tasks as a small team

development of problem solutions for measurement and control, which can be realized in C using mikrocontroller and real-time operating systems

Expenditure classroom teaching

Type Attendance (h/Wk.)

Practical training 1

Tutorial (voluntary) 0

Separate exam

none

© 2022 Technische Hochschule Köln

