Technology Arts Sciences TH Köln

Course IAK - Acoustics for Engineers

Version: 2 | Last Change: 16.09.2019 15:45 | Draft: 0 | Status: vom verantwortlichen Dozent freigegeben

<u>General information</u>

Long name	Acoustics for Engineers
Approving CModule	IAK BaET, IAK BATIN
Responsible	Prof. DrIng. Christoph Pörschmann Professor Fakultät IME
Level	Bachelor
Semester in the year	winter semester
Duration	Semester
Hours in self-study	78
ECTS	5
Professors	Prof. DrIng. Christoph Pörschmann Professor Fakultät IME
Requirements	Basic knowledge mechanics knowledge time domain / frequency domain operations Calculations with real and imaginary values Basic knowledge integral and differential mathematics
Language	German
Separate final exam	Yes

Final exam

Details

Oral examination - graded

The students explain the application-related problems using simple examples, they explain and describe how they relate them to practical applications and which conditions must be observed. The students prove that they can relate these concepts independently to real value problems.

Minimum standard

The students need to illustrate simple relationships. The description is supported by the examiner.

Exam Type

Oral examination - graded

The students explain the application-related problems using simple examples, they explain and describe how they relate them to practical applications and which conditions must be observed. The students prove that they can relate these concepts independently to real value problems.

<u>Lecture / Exercises</u>

Learning goals

Knowledge

Introduction of the basic acoustic parameters Sound pressure, sound velocity, flow, power Logarithmic quantities and levels

Mechanical and acoustic vibration systems Mechanical vibration systems Acoustic vibration systems

Sound propagation in the room Homogeneous plane wave standing waves resonance systems diffraction, refraction, reflection

point sources Behaviour of sound pressure and sound velocity elementary radiator synthesis

Concepts of loudspeakers and microphones) Principles of directional microphones Electrodynamic microphones and headphones Piezoelectric microphones and headphones Dielectric microphones

absorbers Porous Absorbers Helmholtz resonators as absorbers plate absorber

Skills

Analysis and description of systems with loudspeakers and microphones

Calculation and description of the entire sound propagation chain from the microphone via the mechanoelectric conversion, the transmission via a communication link as well as the conversion via an electromechanical transducer and the sound radiation.

Expenditure classroom teaching

Туре	Attendance (h/Wk.)
Lecture	2
Exercises (whole course)	1
Exercises (shared course)	0
Tutorial (voluntary)	0

Separate exam

none

Practical training

Learning goals

Knowledge

Simulation of the propagation of sound waves

Investigation of sound reflection on Kundt's tube

Analysis of eigenmodes

Skills

perform practical measurements based on described tasks

create functional measurement setups

prepare adequate documentation for measurements carried out

Expenditure classroom teaching

Туре	Attendance (h/Wk.)
Practical training	1
Tutorial (voluntary)	0

Separate exam

none

© 2022 Technische Hochschule Köln