Technology Arts Sciences TH Köln

Course PBO - Project-based optics

Version: 2 | Last Change: 13.10.2019 18:19 | Draft: 0 | Status: vom verantwortlichen Dozent freigegeben

A General information

Long name	Project-based optics
Approving CModule	PBO BaET
Responsible	Prof. Dr. Michael Gartz Professor Fakultät IME
Level	Bachelor
Semester in the year	summer semester
Duration	Semester
Hours in self-study	78
ECTS	5
Professors	Prof. Dr. Michael Gartz Professor Fakultät IME
Requirements	Geometric optics Optical metrology wave optics Mathematics 1/2 Physics 1/2 elementary geometry
Language	German
Separate final exam	Yes

Final exam

Details

Oral examination in which the taxonomy levels of understanding, applying, analysing, synthesising and evaluating are tested by students presenting and explaining their projects carried out during the semester and showing that they can understand and apply the technical terms, theories and procedures developed in the lecture, have analysed the requirements of their project task and have synthesised a solution to their project task and can evaluate it in the examination interview.

Minimum standard

50 % of the questions and tasks out of all parts of the examination correctly answered

Exam Type

Oral examination in which the taxonomy levels of understanding, applying, analysing, synthesising and evaluating are tested by students presenting and explaining their projects carried out during the semester and showing that they can understand and apply the technical terms, theories and procedures developed in the lecture, have analysed the requirements of their project task and have synthesised a solution to their project task and can evaluate it in the examination interview.

<u>Lecture</u>

Learning goals

Knowledge

Matrix Sensors
CCD sensors
superstructure
mode of action
sensitivity
noise sources
CMOS sensors
superstructure
mode of action
sensitivity
noise sources
Image error corrections
dark current correction
flat field correction
interfaces
Analog / BAS
Firewire 1394
USB
Ethernet / GigE

Holographic interferometry double exposure holography basics superstructure evaluation applications time-average holography basics superstructure evaluation applications laser light sectioning

basics

superstructure

evaluation

applications

Chromatic longitudinal aberrations basics

superstructure

evaluation

applications

Chapters of students' choice

Laser Material Processing basics cold ablation thermal processing laser types applications Optical Shop Testing Twyman Green Interferometer Fizeau Interfermometer Laser Doppler Anemometry Interferometric speed measurement heterodyne principle applications

Skills

... (Students' suggestions)

calculate the dynamics of a CCD sensor of deformations in holographic interferometry of oscillation amplitudes in holographic interferometry the working range of the chromatic longitudinal aberration sensor the resolution of the light section sensor

define

the resolution of matrix sensors the working range depending on a measuring task

determine

of the wavefront aberrations of the sensitivity of a CDD sensor

assess

of the measuring signal of a light section sensor

of the usability of a matrix sensor for a specific measurement

task

Expenditure classroom teaching

Туре	Attendance (h/Wk.)
Lecture	2
Tutorial (voluntary)	0

Separate exam

none

<u>Project</u>

Learning goals

Skills
Adjusting optical superstructures
Recording and documenting of measurement series
Create diagrams
Ergebnisse auf Plausibilität überprüfen
Recognizing and understanding of interrelationships
error calculation
analyse an optical measuring task Independently recognized measuring task can be analyzed Analyzing a given measuring task
design a solution approach for the analyzed optical measuring task Consideration of laboratory resources Consideration of the available time quota
Presentation of a project outline Describe the task outline the approach Present results in a clearly structured way Discuss results in technical and scientific manner

Milestone presentation to check the progress of the project		
Describe the task		
outline the approach		
Present results in a clearly structured way		
Discuss results in technical and scientific manner		
Final presentation with presentation of the realized solution approach		
Describe the task		
outline the approach		
Present results in a clearly structured way		
Discuss results in technical and scientific manner		
realize basic optical structures yourself		
build		
adjust		
Carry out function test		
investigate scientific/technical principles with an optical structure		
Plan measurement series		
Estimate error influences		
Check the suitability of the superstructure		
Evaluate self-acquired measurement series		
Graphic display of measured values		
Calculate implicit quantities from measured values math.		
correctly		
discover and name logical errors		
Simulate measured values using predefined formulas		
Work on complex technical tasks in a team		
Organize into subtasks		

Discuss measurement results

complement each other meaningfully

Expenditure classroom teaching

Туре	Attendance (h/Wk.)
Project	2
Tutorial (voluntary)	0

Separate exam

none