
Course
SEKM - Software Engineering by Components and Pattern

Version: 1 | Last Change: 06.10.2019 18:52 | Draft: 0 | Status: vom verantwortlichen Dozent freigegeben

General information

Long name Software Engineering by Components and Pattern

Approving CModule QEKS_MaET, QEKS_MaTIN

Responsible Prof. Dr. Stefan Kreiser
Professor Fakultät IME

Level Master

Semester in the year winter semester

Duration Semester

Hours in self-study 78

ECTS 5

Professors Prof. Dr. Stefan Kreiser
Professor Fakultät IME

Requirements - programming skills in an object-oriented programming language,

preferably C++

- knowledge of software modeling using Unified Modeling Language

(UML) or other (formal) languages that support modeling of interfaces,

behavior and structures

- basic knowledge in (agile) project management, SCRUM oder XP

- basic knowledge of essential softare architectural models

- basic knowledge of interconnection models in software systems (OSI,

TCPIP, Messaging)

Language German and English

Separate final exam Yes

Final exam

file:///C:/Users/rene/OneDrive/Dokumente/Arbeit/THK/Gremien/F07-Lehre/Daten/Web/html_pdf/M_QEKS_MaET2020.html
file:///C:/Users/rene/OneDrive/Dokumente/Arbeit/THK/Gremien/F07-Lehre/Daten/Web/html_pdf/M_QEKS_MaTIN2020.html

Details

Oral examination after written preparation.

Based on a realistic task of appropriate complexity, the students develop and model a suitable software architecture for a distributed automation

system using strategies for the reuse of model and/or software artifacts. They justify the essential structures of their architecture with reference to the

specific objectives and the specific environmental conditions for the use of the respective automation system as well as with reference to basic quality

criteria for automation software systems (system, development, operation, service and maintenance requirements). They explain which special

organizational conditions with respect to the development result from their software architecture and evaluate the quality of the architecture from a

technical and business point of view.

Minimum standard

- Students extract the essential relevant information, basic conditions and solution limitations from the task specification and design a model of the

software architecture considering basic quality criteria for automation software systems. To do this, they select a sound strategy for the reuse of model

and/or software artifacts and justify their approach.

- Students explain the essential structures of their software architecture with regard to the adaptation of the reused models and artifacts and justify

them with regard to the given system requirements, i.e. technical system requirements as well as further, possibly relevant, development, operation,

service and maintenance requirements.

Exam Type

Oral examination after written preparation.

Based on a realistic task of appropriate complexity, the students develop and model a suitable software architecture for a distributed automation

system using strategies for the reuse of model and/or software artifacts. They justify the essential structures of their architecture with reference to the

specific objectives and the specific environmental conditions for the use of the respective automation system as well as with reference to basic quality

criteria for automation software systems (system, development, operation, service and maintenance requirements). They explain which special

organizational conditions with respect to the development result from their software architecture and evaluate the quality of the architecture from a

technical and business point of view.

Lecture / Exercises

Learning goals

Knowledge

Terminology

value vs. cost of a technical software

distributed software system, concurrency

software quality, quality of service, refactoring

complexity (algorithmic, structural), emergence

re-use, symmetry and symmetry operations, abstraction, invariants

quality controlled re-use, methodical approaches

variants of white box re-use

black box re-use

grey box re-use (hierarchical approach to re-use)

re-use in automation control software systems

determinism

benefits and challenges

tailoring process models and personnel structures in projects

meet requirements in development projects predictably (product quality, cost, deadlines)

distributed development, maintenance and support of software systems

software pattern

pattern description using UML

essential architectural pattern

construction pattern

structural pattern

behavioural pattern

class based (static) vs. object based (dynamic) pattern

essential pattern for concurrent and networked real time systems

encapsulation and role based extension of layered architectures

concurrency structures to optimize throughput and system response latency

distributed event processing

process synchronisation

construction and use of pattern catalogues, pattern languages

pattern based design of complex software systems

components and frameworks

design principles

interface architectur

active and passive system elements

design, programming and test

quality

configuration and use

using middleware systems to develop architectures of technical software systems

ORB architectures, e.g. CORBA and TAO

integrated system plattforms, e.g. MS .NET

multi agent systems (MAS)

agent architectural models

collaboration between agents

agent languages

considering cases for MAS application

Skills

use pattern to design complex software systems

extract and discuss purpose, limitation of use, invariant and configurable parts of pattern from english and german literature sources

understand implementation skeletons of pattern and map them to problem settings with limited technical focus

discuss benefits of using object oriented programming languages

derive recurrent settings in the development of complex software systems

implement pattern on exemplary settings and test resulting implementations

reasonably combine pattern to solve recurring problem settings with a broader technical focus

use UML2 notations

use professional UML2 IDE for round-trip-engineering

integrate software system based on exemplary implementations of the pattern to combine

conduct integration test, assess software quality and optimize software system

construct black-box-components based on pattern

analyse component based software architectures

derive suitable scope from architectural specs

understand and discuss development process to construct software systems

find active and passive system elements and derive system run time behaviour

understand abstract system interfaces to interconnect, configure and activate components

understand abstract system interfaces to exchange applicational run time data

understand system extension points (functional and structural system configuration layer)

analyse distribution architectures

understand basic system services (describe and reason service usage, relate to system tasks)

relate pattern to structure making architectural software artefacts

derive suitable range of appications for a given distribution architecture

understand engineering process to construct user applications (application layer)

discuss attributes and limitation of usage of interconnection protocols

find designated system extension points

compare MAS to conventional distribution architectures

agent vs. component

architectural models

activation of agents

deployment of agents

protocols for interconnection and collaboration

range of appications and and limitation of usage

Expenditure classroom teaching

Type Attendance (h/Wk.)

Lecture 1

Exercises (whole course) 1

Exercises (shared course) 0

Tutorial (voluntary) 0

Separate exam

none

Seminar

Learning goals

Knowledge

challenging seminar topics can be defined e.g. from the following or related subject areas

- reusable artifacts for building the architecture of distributed software systems,

- professional distribution architectures,

- Multiagent systems,

- special economic, liability and ethical requirements for software systems with (distributed) artificial intelligence and their effects on the design of

software architectures

Skills

present personal work results and work results of the team in a compact and target-group-oriented way, both orally and in writing

Expenditure classroom teaching

Type Attendance (h/Wk.)

Seminar 1

Tutorial (voluntary) 0

Separate exam

Exam Type

interview (discussion) about special issues in scenario, project assignment or literature research

Details

Evaluation of scientific literature and evaluation of the quality of software architectures for distributed automation systems with regard to given

automation issues.

Presentation of results and scientific discourse in the whole group.

Minimum standard

Students research at least two relevant, independent, scientifically serious sources (whitepapers, standards, technical articles, reference books, ...) on

the selected seminar topic, evaluate these sources scientifically and evaluate the researched statements and results with regard to given questions in

the field of automation engineering and software engineering. They report on the researched statements and results as well as their personal

evaluation and classification with regard to the given questions and are able to explain the results and justify the personal evaluation within the scope

of a technical discussion.

Project

Learning goals

Skills

Develop software artifact of a distribution architecture for complex software systems

Carry out project planning in distributed teams with an agile process model

Perform extensive system analysis with respect to the role of the artifact in the distribution architecture

Determine design input requirements for the development of the artifact

Specify and model the software artifact based on the design input requirements

Select and justify design principles and patterns to achieve defined quality objectives

Derive interfaces, behavioral and structural models iterativly based on patterns in UML2 notations

Use professional UML2 design tool purposefully

Verify and evaluate models, correct model errors and optimize models

Programming software artifacts in C++

define meaningful test scenarios and verify software artifacts

Evaluate the quality of the software artifact

Present the team's project results to a professional audience in a compact and target-group-oriented way

Expenditure classroom teaching

Type Attendance (h/Wk.)

Project 1

Tutorial (voluntary) 0

Separate exam

Exam Type

working on projects assignment with your team e.g. in a lab)

Details

3 attendance appointments of 4h each per project group, final presentation and discusssion

Minimum standard

- justified design of an appropriate software architecture, making full use of reuse strategies and demonstrating that the essential design requirements

are met or can be met by extending the architecture.

- justified proof of implementability of the software architecture (feasibility study, C++ prototype)

- evaluation of the quality of the software architecture

© 2022 Technische Hochschule Köln

