Technology Arts Sciences TH Köln

Course TED - Theoretical Electro Dynamics

Version: 5 | Last Change: 02.11.2019 16:14 | Draft: 0 | Status: vom verantwortlichen Dozent freigegeben

General information

Long name	Theoretical Electro Dynamics
Approving CModule	TED MaET
Responsible	Prof. Dr. Karl Kohlhof Professor Fakultät IME
Level	Master
Semester in the year	summer semester
Duration	Semester
Hours in self-study	78
ECTS	5
Professors	Prof. Dr. Karl Kohlhof Professor Fakultät IME
Requirements	Vector analysis
Language	German
Separate final exam	Yes

Final exam

Details

normally written (low number of candidates: oral)

Minimum standard

grade 4.0

Exam Type

normally written (low number of candidates: oral)

<u>Lecture / Exercises</u>

Learning goals

Knowledge

Introduction into Electro Dynamics Charges, currents Forces, fields

Classical Electro Dynamics Electrostatics Field, potential Polarization Electrostatic energy Capacity Multi pole development Interaction of charge distributions Stationary electrical field Magnetostatics Stationary magnetical field Vector potential Magnetization Magetostatic energy Inductivity Quasi stationary electromagnetic fields Induction effects Skin effect Rapidly changing electromagetic fields Electromagnetic wves Reflection and diffraction

Skills

Knowledge of meaning of Maxwell- and material equations

Dervation of electric/magnetic potential/field from charge/current distributions

Development of potential / field to monopole, dipole, quadrupole and higher moments

Caculation of capacity/inductivity to charge/current distributions from energy balance

Derivation of Continuity equation, Kirschhoff Laws from Maxwell equations

Derivation and solving of diffusion/wave equations from Maxwell equations

Solving of training examples

Expenditure classroom teaching

Туре	Attendance (h/Wk.)
Lecture	3
Exercises (whole course)	1
Exercises (shared course)	0
Tutorial (voluntary)	0

Separate exam

none

© 2022 Technische Hochschule Köln