Technology Arts Sciences TH Köln

Course VER - Virtual and Augmented Reality

Version: 4 | Last Change: 30.09.2019 17:04 | Draft: 0 | Status: vom verantwortlichen Dozent freigegeben

A General information

Long name	Virtual and Augmented Reality
Approving CModule	<u>VER MaMT, VER MaTIN</u>
Responsible	Prof. DrIng. Arnulph Fuhrmann Professor Fakultät IME
Level	Master
Semester in the year	winter semester
Duration	Semester
Hours in self-study	60
ECTS	5
Professors	Prof. DrIng. Arnulph Fuhrmann Professor Fakultät IME
	Prof. Dr. Stefan Grünvogel Professor Fakultät IME
Requirements	Computer Graphics
	Computer Animation
Language	German, English if necessary
Separate final exam	Yes

Final exam

Details

In an oral examination, students demonstrate the following competences:

- mastering the concepts of VR/AR (proven by answering questions on these concepts)

- Applying the mathematical basis of VR/AR (proven by computational tasks)

- Evaluation of VR/AR solutions (proven by answering questions on current solutions)

Minimum standard

At least 50% of the questions are answered correctly.

Exam Type

In an oral examination, students demonstrate the following competences:

- mastering the concepts of VR/AR (proven by answering questions on these concepts)
- Applying the mathematical basis of VR/AR (proven by computational tasks)
- Evaluation of VR/AR solutions (proven by answering questions on current solutions)

Lecture

Learning goals

Knowledge

Explain terms from the field of virtual and augmented reality Explain and compare data structures and algorithms for VR/AR applications 3D data formats Spatial data structures Describing Multimodal User Interfaces Selection of 3D objects Manipulation of 3D objects Navigation in virtual scenes system control Describe input and output devices and specific virtual and augmented reality hardware display technologies Stereo Displays Autostereoscopic Displays projection solutions Wearable Displays Head Mounted Displays Handheld Displays See-through Displays Workbench Cave Tiled Displays 3D-Audio Force Feedback Devices Haptic feedback input devices controller data gloves locomotion devices Explain algorithmic and mathematical basics stereoscopy tracking capture of position and orientation: Degrees of freedom tracking technologies Mechanical Optical

Electromagnetic ultrasound interial eye tracking head tracking object tracking Markerless Tracking Marker-Based Tracking rendering management of large 3D scenes haptic rendering stereo rendering real-time rendering collision detection intersections between primitives Discrete and continuous collision detection acceleration data structures collision response

Expenditure classroom teaching

Туре	Attendance (h/Wk.)
Lecture	2
Tutorial (voluntary)	0

Separate exam

none

^ Practical training

Learning goals

Skills

- Design, build and evaluate virtual environments and augmented reality applications
- Creating Interaction and Navigation Procedures
- Further develop fundamental technologies of virtual and augmented reality
- Use tools and methods to implement VR/AR applications
- Apply algorithmic and mathematical principles of VR/AR
- understand and grasp textual tasks
- Testing and debugging your own application

Expenditure classroom teaching

Туре	Attendance (h/Wk.)
Practical training	2
Tutorial (voluntary)	0

Separate exam

Exam Type

working on practical scenarion (e.g. in a lab)

Details

Development of different VR/AR applications with tasks to the topics of the lecture. During the laboratory the students work on the tasks with the help of the lecturer. Afterwards the independent completion takes place in self-study.

Minimum standard

More than 80% of all exercises submitted. A task is deemed to have been completed if it has been solved predominantly and independently.

^ <u>Seminar</u>

Learning goals

Skills

Apply Algorithmic and Mathematical fundamentals Check interaction and navigation procedures Independently obtaining and summarizing scientific literature Present and discuss new concepts of virtual and augmented reality

Expenditure classroom teaching

Туре	Attendance (h/Wk.)
Seminar	1
Tutorial (voluntary)	0

© 2022 Technische Hochschule Köln