Technology Arts Sciences TH Köln

Course ZR - State Space Control

Version: 1 | Last Change: 29.09.2019 10:42 | Draft: 0 | Status: vom verantwortlichen Dozent freigegeben

<u>General information</u>

Long name	State Space Control
Approving CModule	<u>ZR MaET</u>
Responsible	Prof. Dr. Norbert Große Professor Fakultät IME
Level	Master
Semester in the year	winter semester
Duration	Semester
Hours in self-study	78
ECTS	5
Professors	Prof. Dr. Norbert Große Professor Fakultät IME
Requirements	Basics of control engineering differential equations, Laplace transformation, frequency domain; Matrix calculation
Language	German
Separate final exam	Yes

Final exam

Details

Written exam, similar to the exercises; Support by means of matrix calculation software Scilab. Comprehension questions.

Minimum standard

Achieving half of the possible points

Exam Type

Written exam, similar to the exercises; Support by means of matrix calculation software Scilab. Comprehension questions.

<u>Lecture / Exercises</u>

Learning goals

Knowledge
Sampling, quantization describe
escribe time-discrete systems in the time domain
Describe time-discrete systems in the frequency domain
Analyze the stability and position of the poles of the transfer function
tate space description of a system Describe time-continuously Describe time-discretely
Transform to normal forms
Determine stability, controllability, observability
Design state space controller according to pole asignment
Design optimal state space controller
Prefilter and noise compensation design
Design of observers with pole placement
Design of optimal observers
Skills

Create models from a physical perspective

Select suitable state variables

Perform simulation of dynamic systems

Expenditure classroom teaching

Туре	Attendance (h/Wk.)
Lecture	2
Exercises (whole course)	1
Exercises (shared course)	0
Tutorial (voluntary)	0

Separate exam

Exam Type

solving exercises within limited functional / methodical scope under examination conditions

Details

Exam with tasks to be calculated, use of the software Scilab; comprehension questions

Minimum standard

Achieving half of the possible points

• Practical training

Learning goals

Skills

Use spreadsheet programs for difference equations

Use matrix calculation programs

Perform simulation of dynamic systems

Review design of complex dynamic systems

Expenditure classroom teaching

Туре

Attendance (h/Wk.)

Practical training

Separate exam

Exam Type

solving exercises within limited functional / methodical scope

Details

Face-to-face and self-learning exercises; edit two larger tasks using spreadsheet software and Scilab; create a documentation for this

Minimum standard

error-free solving of the two specified tasks

© 2022 Technische Hochschule Köln