

TH Köln

Modul

GSP - Grundlagen der Systemprogrammierung

Bachelor Technische Informatik 2020

Version: 2 | Letzte Änderung: 15.09.2019 12:27 | Entwurf: 0 | Status: vom Modulverantwortlichen freigegeben | Verantwortlich: Thieling

^ Allgemeine Informationen

Anerkannte Lehrveranstaltungen	GSP Thieling
Fachsemester	2
Dauer	1 Semester
ECTS	5
Zeugnistext (de)	Grundlagen der Systemprogrammierung
Zeugnistext (en)	Fundamentals in System Programming
Unterrichtssprache	deutsch oder englisch
abschließende Modulprüfung	Ja

Modulprüfung

Benotet	Ja
Fraguenz	ladas Samestar

Prüfungskonzept

Die Studierenden sollen in einer schriftlichen Klausur folgende Kompetenzen nachweisen: 1.) Sicherer Umgang mit grundlegenden Begrifflichkeiten, Mechanismes und Konnzepten. 2.) Programmierung unter C. 3.) Entwicklung von einfachen Hardwaretreibern. 4.) Entwicklung von Problemlösungen aus dem Bereich Messen-Steuern-Regeln unter Verwendung eines Mikrocontrollers nebst Echtzeitbetriebssystem.

^ Allgemeine Informationen

Inhaltliche Voraussetzungen

Kompetenzen

Kompetenz	Ausprägung
In Systemen denken	diese Kompetenz wird vermittelt
fachliche Probleme abstrahieren und formalisieren	diese Kompetenz wird vermittelt
Konzepte und Methoden der Informatik, Mathematik und Technik kennen und anwenden	diese Kompetenz wird vermittelt
Systeme analysieren	diese Kompetenz wird vermittelt
Systeme entwerfen	diese Kompetenz wird vermittelt
Systeme realisieren	diese Kompetenz wird vermittelt
Systeme prüfen	diese Kompetenz wird vermittelt
Informationen beschaffen und auswerten; Technische Zusammenhänge darstellen und erläutern	Voraussetzungen für diese Kompetenz (Wissen,) werden vermittelt
Typische Werkzeuge, Standards und Best Practices der industriellen Praxis kennen und einsetzen	Voraussetzungen für diese Kompetenz (Wissen,) werden vermittelt
In vorhandene Systeme einarbeiten und vorhandene Komponenten sinnvoll nutzen	diese Kompetenz wird vermittelt
Befähigung zum lebenslangen Lernen	Voraussetzungen für diese Kompetenz (Wissen,) werden vermittelt
Kommunikative und interkulturelle Fähigkeiten anwenden	Voraussetzungen für diese Kompetenz (Wissen,) werden vermittelt

^ <u>Vorlesung / Übungen</u>

Exemplarische inhaltliche Operationalisierung

Die Studierenden erlernen umfangreiche Kenntnisse über den Aufbau von Mikrocontrollern, die hardwarenahe Programmierung in C, die Realisierung von einfachen Automaten in C, die Verwendung von Interrupts sowie der Scheduling- und Kommunikationsmechanismen eines Echtzeitbetriebssystems, die E/A- Programmierung mit Hilfe von Treiberschnittstellen sowie die Implementierung von Treiberschnittstellen.

Separate Prüfung

keine

^ Praktikum

Exemplarische inhaltliche Operationalisierung

Die Studierenden setzen die erworbenen Kenntnisse in praktischen Projekten zur Steuerung von elektromechanischen Modelle unter Verwendung eines Mikrocontrollers und eines Echtzeitbetriebssystem in der Programmiersprache C um.

Separate Prüfung

Benotet	Nein
Frequenz	Einmal im Jahr
Voraussetzung für Teilnahme an Modulprüfung	Ja

Prüfungskonzept

Die Studierenden schliessen sich zu Kleingruppen zusammen. Jede Kleingruppe bearbeitet mehrerer kleinere Projekte mit zugewiesenen Laborterminen.

© 2022 Technische Hochschule Köln