Modul

LT - Lasertechnik

Bachelor Optometrie 2021


PDF Studiengangsverzeichnis Studienverlaufspläne Bachelor Optometrie

Version: 1 | Letzte Änderung: 11.11.2020 18:00 | Entwurf: 0 | Status: vom Modulverantwortlichen freigegeben | Verantwortlich: Altmeyer

Anerkannte Lehrveran­staltungen LT_Altmeyer
Fachsemester 3
Dauer 1 Semester
ECTS 5
Zeugnistext (de) Lasertechnik
Zeugnistext (en) Laser Physics and Technology
Unterrichtssprache deutsch oder englisch
abschließende Modulprüfung Ja
Inhaltliche Voraussetzungen
Handlungsfelder
Auslegung, Entwicklung und Anwendung optischer Komponenten und Systeme
Modulprüfung
Benotet Ja
Frequenz Jedes Semester
Prüfungskonzept

So weit die Prüfungszahl nicht zu groß ist, wird eine mündliche Prüfung gegenüber einer schriftlichen Prüfung bevorzugt.

In der Prüfung werden auf unterstem Kompetenzniveau Kenntnisse abgefragt. Dies sind beispielsweise die Baugruppen, die in
jedem Laser enthalten sind, die Definition von Begriffen wie die Strahlqualität oder der Beugungsmaßzahl, die Wellenlängen, Leistungsklassen und Anwendungsgebiete der wichtigsten Laser deren Relevanz im Bereich der Industrie oder der Medizin, insebsondere der Augenheilkunde, liegt.

Auf nächster Kompetenzstufe werden Fertigkeiten geprüft. Dies kann beispielsweise dadurch erfolgen, dass eine Strahldurchrechnung von Gaußstrahlen durchgeführt wird, die optische Stabilität eines Laser-Resonators berechnet wird oder die Anzahl der zu erwartenden longitudinalen Moden bei gegebenem Lasermedium und Resonator-Parametern abgeschätzt wird.

Die höchste prüfbare Kompetenzstufe betrifft die Methodenkompetenz. Deren Ausprägung kann überprüft werden, indem ein Anwendungsfall geschildert wird: Aufgaben können sein, für ein Schweiß-Aufgabe in der Produktion, ein Belichtung von Halbleiter-Chips oder eine Augen-OP, ein geeignetes Lasersystem in seinen Grundparametern begründet zu beschreiben und die weitere Vorgehensweise bei der Parametrisierung und Auswahl unter Berücksichtigung von wirtschaftlichen und sicherheitstechnischen Aspekten darzustellen.

Learning Outcomes
LO1 - Was:
Das Modul vermittelt Kompetenzen zur Konzepzionierung (K.5, K.11), Auslegung (K.5, K.11), Analyse (K.2, K.3, K.4, K.11 ) und Überprüfung (K.11) von Lasern und Lasersystemen für die Lasermaterialbearbeitung unter besonderer Berücksichtigung der zugrunde liegenden physikalischen Wirkprinzipien und betriebswirtschaftlicher Aspekte (K. 14).

Vorlesungsbegleitend findet ein projektnahes (K.18) Praktikum statt, wobei die Aufgaben in Zweier-Teams zu bearbeiten sind (K.15). Sprachliche Kompetenzen (K.20) zur präzisen Darstellung technisch komplexer Zusammenhänge werden durch verpflichtende schriftliche Vorbereitung und Ausarbeitung geschult. Die durchzuführende Fehleranalyse und -diskussion sowie Spiegelung an erwartbaren Ergebnissen, vermittelt Bewertungskompetenzen (K.13).

Feste Zeitvorgaben und Termine für Vorbereitung, Ausarbeitung, Protokoll-Abgabe und ggf. Überarbeitung befördern die Entscheidungsfähigkeit (K.16) und vor allem die Selbstorganisation (K.19).

Womit:
Der Dozent vermittelt neben Wissen und Fertigkeiten in einer Vorlesung mit integrierten kurzen Übungsteilen die Kompetenz, verschiedene Eigenschaften von Lasern, Laserlicht und der Laserlicht-Materiewechselwirkung auf physikalischen Zusammenhänge zurückführen zu können und deren wirtschaftliche Konsequenzen zu beurteilen. Weiterhin wird ein Praktikum durchgeführt, welches projektartigen Charakter hat: Neben einer schriftlichen Vorbereitung sind Laser selber aufzubauen und mit eigenen optischen Aufbauten zu charakterisieren. Zu jedem Versuch ist eine schriftiche Ausarbeitung erforderlich.

Wozu:
Kompetenzen im Verständnis, des Entwurfes, der Entwicklung, der Analyse, der Überprüfungund des Einsatzes von Lasersystemen sind essentiell für Personen, die im Bereich der Photonik tätig sein wollen. Für Optometristen betrifft dies das HF 1: Laser und Lasersystem sind in der Augenheilkunde weit verbreitet. Im Bereich der Netzhaut Operationen, der refraktiven Hornhaut Chirurgie, der Behandlung des grünen Stars, der Behandlung des grauen Stars und auch der Nach-Star Behandlung werden oft Laser eingesetzt.
Laseranlagen sind wissenschaftlich, technisch komplexe und teure Investitionsgüter, deren Projektierung, Anschaffung und Betreuung typischerweise in qualifiziert zusammengesetzten Gruppen stattfindet.
Kompetenzen
Vermittelte Voraussetzungen für Kompetenzen
Informationen beschaffen und auswerten
Betriebswirtschaftliches und rechtliches Grundwissen benennen, erklären und anwenden
In unsicheren Situationen entscheiden

Vermittelte Kompetenzen
Abstrahieren
Optische Vorgänge in Realweltproblemen erkennen und erklären
Erkennen, Verstehen und analysieren technischer und medizinischer Zusammenhänge
MINT Modelle nutzen
Arbeitsergebnisse bewerten
Komplexe Aufgaben im Team bearbeiten
Lernkompetenz demonstrieren
Sich selbst organisieren und reflektieren
Sprachliche und interkulturelle Fähigkeiten anwenden

Inhaltliche Voraussetzungen
Handlungsfelder
Auslegung, Entwicklung und Anwendung optischer Komponenten und Systeme
Learning Outcomes
LO1 - Was:
Das Modul vermittelt Kompetenzen zur Konzepzionierung (K.5, K.11), Auslegung (K.5, K.11), Analyse (K.2, K.3, K.4, K.11 ) und Überprüfung (K.11) von Lasern und Lasersystemen für die Lasermaterialbearbeitung unter besonderer Berücksichtigung der zugrunde liegenden physikalischen Wirkprinzipien und betriebswirtschaftlicher Aspekte (K. 14).

Vorlesungsbegleitend findet ein projektnahes (K.18) Praktikum statt, wobei die Aufgaben in Zweier-Teams zu bearbeiten sind (K.15). Sprachliche Kompetenzen (K.20) zur präzisen Darstellung technisch komplexer Zusammenhänge werden durch verpflichtende schriftliche Vorbereitung und Ausarbeitung geschult. Die durchzuführende Fehleranalyse und -diskussion sowie Spiegelung an erwartbaren Ergebnissen, vermittelt Bewertungskompetenzen (K.13).

Feste Zeitvorgaben und Termine für Vorbereitung, Ausarbeitung, Protokoll-Abgabe und ggf. Überarbeitung befördern die Entscheidungsfähigkeit (K.16) und vor allem die Selbstorganisation (K.19).

Womit:
Der Dozent vermittelt neben Wissen und Fertigkeiten in einer Vorlesung mit integrierten kurzen Übungsteilen die Kompetenz, verschiedene Eigenschaften von Lasern, Laserlicht und der Laserlicht-Materiewechselwirkung auf physikalischen Zusammenhänge zurückführen zu können und deren wirtschaftliche Konsequenzen zu beurteilen. Weiterhin wird ein Praktikum durchgeführt, welches projektartigen Charakter hat: Neben einer schriftlichen Vorbereitung sind Laser selber aufzubauen und mit eigenen optischen Aufbauten zu charakterisieren. Zu jedem Versuch ist eine schriftiche Ausarbeitung erforderlich.

Wozu:
Kompetenzen im Verständnis, des Entwurfes, der Entwicklung, der Analyse, der Überprüfungund des Einsatzes von Lasersystemen sind essentiell für Personen, die im Bereich der Photonik tätig sein wollen. Für Optometristen betrifft dies das HF 1: Laser und Lasersystem sind in der Augenheilkunde weit verbreitet. Im Bereich der Netzhaut Operationen, der refraktiven Hornhaut Chirurgie, der Behandlung des grünen Stars, der Behandlung des grauen Stars und auch der Nach-Star Behandlung werden oft Laser eingesetzt.
Laseranlagen sind wissenschaftlich, technisch komplexe und teure Investitionsgüter, deren Projektierung, Anschaffung und Betreuung typischerweise in qualifiziert zusammengesetzten Gruppen stattfindet.
Kompetenzen
Kompetenz Ausprägung
Abstrahieren Vermittelte Kompetenzen
Optische Vorgänge in Realweltproblemen erkennen und erklären Vermittelte Kompetenzen
Erkennen, Verstehen und analysieren technischer und medizinischer Zusammenhänge Vermittelte Kompetenzen
MINT Modelle nutzen Vermittelte Kompetenzen
Informationen beschaffen und auswerten Vermittelte Voraussetzungen für Kompetenzen
Arbeitsergebnisse bewerten Vermittelte Kompetenzen
Betriebswirtschaftliches und rechtliches Grundwissen benennen, erklären und anwenden Vermittelte Voraussetzungen für Kompetenzen
Komplexe Aufgaben im Team bearbeiten Vermittelte Kompetenzen
In unsicheren Situationen entscheiden Vermittelte Voraussetzungen für Kompetenzen
Lernkompetenz demonstrieren Vermittelte Kompetenzen
Sich selbst organisieren und reflektieren Vermittelte Kompetenzen
Sprachliche und interkulturelle Fähigkeiten anwenden Vermittelte Kompetenzen

Exempla­rische inhaltliche Operatio­nalisierung

Operationalisierung von Vorlesungen

- Verschiedene Typen von Lasern, ihr Aufbau und ihre charakteristischen Eigenschaften
- Gaslaser, Flüssigkeitslaser (Farbstofflaser), Festkörperlaser, Diodenlaser
- Faserlaser, Stablaser, Scheibenlaser
- cw-Laser, Pulslaser, Kurzpulslaser und Ultrakurpulslaser
- IR, VIS und UV Laser
- CO2 Laser, Nd:YAG Laser, frquenzverdoppelte ND:YAG Laser, Argon-Laser, verschiedene
Excimer Laser, Titan:Saphir Laser, verschiedende Diodenlasern und Pumplaser-Dioden

- verschiedene Eigenschaften von Laserstrahlung
- laterale Moden
- axiale Moden
- Beugunsmaßzahl, Strahlqualität und Strahlparameterprodukt
- Beugungs- und Abbildungsverhalten

- verschiedene Aspekte der Materialbearbeitung
- Tempern, Härten, Löten, Schweißen, Bohren, Schneiden,
Schmelzen, Verdampfen, Sublimieren, Photo-Disruption, Coulomb-Explosion-

- Gängige Einsatzfelder von Lasern in der Industrie

- Gängige Einsatzfelder von Lasern in der Medizin

Obige Kenntnisse sollen kein zusammenhangloses Wissen bilden, sondern durch ein tiefes Verständnis der folgenden Dinge miteinander verknüpft sein und Transferleistungen erlauben:

- Physik der Entstehung von Laserlicht
- Physik der Laserlicht-Material Wechselwirkung
- Beugungstheorie

Im Detail sollen folgende Fertigkeiten vermittelt werden:
- Erforderliche Wellenlänge, Pulseigenschaften, Leistung, Strahlqualität, Spotgröße für einen Anwendungsfall bestimmen können
- Durchgang von Laserstrahlung durch Optiken mit Strahltransfermatrizen berechnen können

Oberstes Kompetenzniveau ist die Expertise:
- bei einem konkreten Anwendungsszenario beurteilen, ob Einsatz von Lasern möglich und wirtschaftlich ist
- Im Falle einer gewünschten Laserlösung für ein Problem, Systemkomponenten auswählen können, Aufbauten konzeptionieren können, Lösungen Dritter analysieren und bewerten können,


Operationalisierung von Präsenzübungen

- Berechnung von Pulsspitzenleistung, mittlerer Leistung, Intensität, Lichtdruck und Feldstärke eines Femtosekundenlasers bei Angabe von Pulsenergie, Pulsdauer und Repetitionsrate. Abschätzung ob bei der Materialbearbeitung mit diesem Laser Röntgenstrahlung entsteht.

- Berechnung der Anzahl axialer Moden eines Lasers bei bekannten Resonatordaten und der Verstärkungsbandreite des Mediums

- Berechnung der Fokuslage eines Gaußenschen Strahls bei bekannter Rayleighlänge und gegebener Brennweite und Taillenlage

- Berechnung eines Etalons zur Einengung der Emissionsbandbreite, um der Kohärenzanforderung eines holografischen Aufbaus zu genügen

Separate Prüfung

keine

Exempla­rische inhaltliche Operatio­nalisierung

- Laser aufbauen, justieren und zünden.

- Transversale Moden messen und Strahlqualität sowie Beugungsmaßzahl berechnen

- Axiale Moden messen. Bestimmung des freien Spektralbereichs, der spektralen Breite einer Mode, der Verstärkungsbandbreite eines Lasers, dessen Kohärenzlänge

- Diodengepumpten Festkörperlaser aufbauen

- Einheit zur Frequenzverdopplung aufbauenund in Betrieb nehmen

Separate Prüfung
Benotet Nein
Frequenz Einmal im Jahr
Voraussetzung für Teilnahme an Modulprüfung Ja
Prüfungskonzept

Kenntnisse:

Vor Antritt des Praktikums sind zu Hause ausgearbeitete Aufgaben vorzulegen.
Die Grundideen zum Versuch werden vor dessen Durchführung im Gespräch erfragt.

Fertigkeiten:

Die Strategie den Laser zu justieren oder den optischen Aufbau zu errichten und zu justieren muss erläutert werden und wird in der Folge auch begleitet.

Das Versuchsprotokoll wird überpüft auf sprachliche Fähigkeiten, insbesondere Wissenschaftlichkeit und Präzision im Ausdruck und Verständnis der Sachzusammenhänge.

Methoden :
Die Auswertungen, vor allem die geforderten Interpretationen der Ergebnisse, erfordern immer ein gewisses Maß an Methodenkompetenz und können so überprüft werden.


© 2022 Technische Hochschule Köln