

TH Köln

Modul

PPRA - Parallelprogrammierung und Rechnerarchitekturen

Bachelor Technische Informatik 2020

Version: 3 | Letzte Änderung: 26.04.2022 19:13 | Entwurf: 6 | Status: Entwurf | Verantwortlich: Thieling

^ Allgemeine Informationen

Anerkannte Lehrveranstaltungen	PPRA Thieling.
Fachsemester	4
Dauer	1 Semester
ECTS	5
Zeugnistext (de)	Parallelprogrammierung und Rechnerarchitekturen
Zeugnistext (en)	Parallel Programming and Computerarchitektur
Unterrichtssprache	deutsch oder englisch
abschließende Modulprüfung	Ja

Modulprüfung

Benotet	Ja
Frequenz	Jedes Semester

Prüfungskonzept

Die Studierenden sollen in einer schriftlichen Klausur (bei kleiner Teilnehmerzahl: mündliche Prüfung) folgende Kompetenzen nachweisen: 1.) Sicherer Umgang mit grundlegenden Begrifflichkeiten, Mechanismes und Konzepten. 2.) Programmierung unter Verwendung gängiger Entwurfwerkzeuge (z.B. MPI und CUDA). 3.) Entwicklung von Problemlösungen die prädestiniert sind für den Einsatz von Parallelrechnersystemen.

^ Allgemeine Informationen

Inhaltliche Voraussetzungen

Kompetenzen

Kompetenz	Ausprägung
In Systemen denken	diese Kompetenz wird vermittelt
fachliche Probleme abstrahieren und formalisieren	diese Kompetenz wird vermittelt
Konzepte und Methoden der Informatik, Mathematik und Technik kennen und anwenden	diese Kompetenz wird vermittelt
Systeme analysieren	diese Kompetenz wird vermittelt
Systeme entwerfen	diese Kompetenz wird vermittelt
Systeme realisieren	diese Kompetenz wird vermittelt
Systeme prüfen	diese Kompetenz wird vermittelt
Informationen beschaffen und auswerten; Technische Zusammenhänge darstellen und erläutern	Voraussetzungen für diese Kompetenz (Wissen,) werden vermittelt
Typische Werkzeuge, Standards und Best Practices der industriellen Praxis kennen und einsetzen	Voraussetzungen für diese Kompetenz (Wissen,) werden vermittelt
In vorhandene Systeme einarbeiten und vorhandene Komponenten sinnvoll nutzen	diese Kompetenz wird vermittelt
Befähigung zum lebenslangen Lernen	Voraussetzungen für diese Kompetenz (Wissen,) werden vermittelt
Kommunikative und interkulturelle Fähigkeiten anwenden	Voraussetzungen für diese Kompetenz (Wissen,) werden vermittelt

^ Vorlesung / Übungen

Exemplarische inhaltliche Operationalisierung

Die Studierenden erlernen umfangreiche Kenntnisse über den Hardware-Aufbau von Parallelrechnersystemen, die sowohl lose als auch eng gekoppelt sind, sowie deren Nutzung unter Verwendung von gängigen Entwicklungswerkzeugen zur Parallelprogrammierung (z.B. MPI, CUDA). Sie erarbeiten Problemlösung, die prädestiniert sind für den Einsatz von Parallelrechnersystemen.

Separate Prüfung

keine

^ Praktikum

Exemplarische inhaltliche Operationalisierung

Die Studierenden setzen die erworbenen Kenntnisse in praktischen Projekten zur Programmierung paralleler Rechnersysteme um. Die Projekte resultieren aus gängigen Fragestellung im Bereich rechen/datenintensiver Algorithmen (z.B. Suche nach Stichworten in großen Textdateien), der Signalverarbeitung (z.B. Bildverarbeitung), der Künstlichen Intelligenz (z.B. Neuronale Netze) oder der Simulation (z.B. raytracing-basierte Grafische Darstellungen).

Separate Prüfung

Benotet	Nein
Frequenz	Einmal im Jahr
Voraussetzung für Teilnahme an Modulprüfung	Ja

Prüfungskonzept

Die Studierenden schliessen sich zu Kleingruppen zusammen. Jede Kleingruppe bearbeitet mehrerer kleinere Projekte. Dabei reichen sie über eine Lernplattform Vorbereitungen ein, wozu sie Tutorials und Zugriff auf Rechnersysteme / Simulatoren erhalten. In Laborterminen werden die Teilaufgaben bearbeitet, die nicht online zu erledigen sind. Die Überprüfung der Lösungseigenständigkeit erfolgt in Online- oder Präsenzterminen.

© 2022 Technische Hochschule Köln