Modulhandbuch BaTIN 2012_Signalverarbeitung mit Matlab Mikroprozessor und DSP

Modul

A nerkennbare Lehrveranstaltung (LV)
Organisation
Modulprüfung
Prüfungselemente
Vorlesung / Übung
Projekt

Verantwortlich: Prof. Dr. Elders-Boll

Modul

Anerkennbare Lehrveranstaltung (LV)

• FO7 SMMD

Organisation

	Bezeichnung	
Lang	BaTIN2012_Signalverarbeitung mit Matlab Mikroprozessor und DSP	
MID	BaTIN2012_S MMD	
MPID		

Zuordni	ung
S tudiengang	BaTIN2012
S tudienrichtung	H, P
Wissensgebiete	WNT, P_PSV

Einordnung Curriculun	
Fachsemester	4-6
Pflicht	Р
Wahl	BNT

Ver	sion
ers tell t	2011- 11-10
VID	1
gültig ab	WS 2012/13
gültig bis	

Zeugnistext

de

Signalverarbeitung mit Matlab, Mikroprozessor und DSP

en

Real-time digital signal processing

Unterrichtssprache

Deutsch oder Englisch

Modulprüfung

Form der Modulprüfung	
sSB	Schriftlicher Bericht der Egebnisse der Projektarbeit (40%)
sMB	Präsentation der Ergebnisse der Projektarbeit (40%)

Beiträge ECTS-CP aus Wissensgebieten	
WNT, P_PSV	5
Summe	5

Aufwand [h]: 150

Prüfungselemente

Vorlesung / Übung

	Form Kompetenznachweis
bK	1 -2 semesterbegleitende Tests

Beitra	ag zum Modulergebnis
bK	benotet, 20%

Spezifische Lernziele

Kenntnisse

- Prinzipien der digitalen Signalverarbeitung (PFK.1,PFK.2,PFK.4)
- Echtzeitsignalverarbeitung (PFK.2,PFK.3)

Fertigkeiten

- Grundlagen der digitalen Signalverarbeitung anwenden (PFK.3)
- Implementierung und Echtzeitsignalverarbeitung (PFK.1,PFK.4,PFK.3)

Exemplarische inhaltliche Operationalisierung

Prinzipien der digitalen Signalverarbeitung

- Abtastung und Rekonstruktion
- Digitale Filter
- DFT und FFT
- Implementierung der Faltung mit Hilfe der FFT
- Spek tralanalyse
- Signalgenerierung

Echtzeitsignalverarbeitung

- Interrupt und Polling
- Blockbasierte Signalverarbeitung

Grundlagen der digitalen Signalverarbeitung anwenden

- Grundlegende Prinzipien der digitalen Signalverarbeitung verstehen und erklären können
- Unterschiedliche Filter Typen und Implementierungen vergleichen und bewerten können

Implementierung und Echtzeitsignalverarbeitung

- Grundlegende Problematik der Echtzeitsignalverarbeitung darstellen können
- Einflussfaktoren auf die Verarbeitungsgeschwindigkeit benennnen können
- Grundlegende Verfahren zur Echtzeitsignalverarbeitung verstehen und erklären können

Projekt

	Form Kompetenznachweis
bPA	Projektarbeit im Team
bF G	2-3 Besprechungstermine mit einem der Dozenten

Beitrag zum Modulergebnis	
bPA	Voraussetzung für die Zulassung zum abschließenden Vortrag
bF G	Voraussetzung für die Zulassung zum abschließenden Vortrag

Spezifische Lernziele

Fertigkeiten

• Algorihmen in Matlab implementieren (PFK.4,PFK.5,PFK.6, PFK.9,PFK.7)

- vorgegebenen Algorithmus in Matlab programmieren
- Programm debuggen und optimieren
- Matlab Werkzeuge verwenden können
 - Filterdesigner
- Mikroprozessor oder DSP zur Signalverarbeitung nutzen (PFK.5,PFK.6, PFK.9,PFK.7)
 - Algorithmus in C auf Zielprozessor programmieren
 - Entwicklungsumgebung kennen und nutzen können
 - Programm debuggen und optimieren
 - Eigenschaften des Prozessors und Boards kennen
 - Algorithmus auf den verwendeten Hardware effizient realisieren

Handlungskompetenz demonstrieren

- komplexe Aufgaben im Team bewältigen (PFK.11, PSK.1, PSK.3, PSK.4)
 - einfache Projekte planen und steuem
 - Absprachen und Termine einhalten
 - Reviews planen und durchführen
- Verfahren der Signalverarbeitung auf Zielplatform implementieren
 - Vorgegeben Verfahren der digitalen Signalverarbeitung verstehen (PFK.4,PFK.3)
 - Notwendige Literatur beschaffen und verstehen (PSK.8)
 - Mathematisch formulierte Verfahren in Programmcode umsetzen (PFK.4,PFK.3,PFK.5,PFK.6)
 - Programm testen und prüfen (PFK.7)
 - Programm optimieren (PFK.6)
- Arbeitsregebnisse darstellen (PFK.8)
 - Präsentation der Ergebnisse der Projektarbeit (in Englisch) (PSK.4)
 - Schriftlicher Bericht der Ergebnisse der Projektarbeit (in Englisch) (PSK.4)

Exemplarische inhaltliche Operationalisierung

Implementierung eines vorgegebenen Verfahrens der digitalen Signalverarbeitung in Teamarbeit

- Verstehen des vorgegebenen Algorithmus * Ggfs. mit Literaturrecherche von Sekundärliteratur
- Implementieren des Algorithmus in Matlab
- Implementieren des Algorithmus auf der Zielplatform
- Präsentation der erreichten Ergebnisse

Das Urheberrecht © liegt bei den mitwirkenden Autoren. Alle Inhalte dieser Kollaborations-Plattform sind Eigentum der Autoren.

Ideen, Anfragen oder Probleme bezüglich Foswiki? Feedback senden