Course Digital Systems and computer Architecture

Course

Meets requirements of following modules(MID) Course Organization Assessment Course components <u>Lecture/Exercise</u> <u>Lab</u>

Responsible: Prof.Dr.G.Hartung

Course

Meets requirements of following modules(MID)

- in active programs
 - Ba MT2012 CA
 - Ba TIN2012 CA

Course Organization

Version		Course identifiers			
created	2013_07_15	Long name	Digital Systems and computer Architecture		
VID	1	CID	F07_RA		
valid from	WS 2012/13	CEID (exam identifier)			
valid to					

Contact hours per week (SWS)		Total contact hours		Max. capacity	
Lecture	2	Lecture	30	Exercise (unsplit)	
Exercise (unsplit)	1	Exercise (unsplit)	15	Exercise (split)	40
Exercise (split)		Exercise (split)		Lab	18
Lab	1	Lab	15	Project	
Project		Project		Seminar	
Seminar		Seminar			
Tutorial(voluntary)	2	Tutorial (voluntary)	30		

Total effort (hours): 150

Instruction language

• Englisch

Study Level

• Bachelor

Prerequisites

- Basic skills in Digital Systems and Computer Engineering
- Basic Skills in Programming, especially C
- Basic Knowledge in Operating Systems

Textbooks, Recommended Reading

• Wakerly: Digital Design Principles and Practices

• Tanenbaum: Computer Architecture

Instructors

• Prof.Dr.G.Hartung

Supporting Scientific Staff

• Dipl.-Ing. C. Ctistis

Transcipt Entry

Digital Systems and Computer Architecture

Assessment

	Туре
wE	normal case (few participants: oE)

Total effor	rt [hours]
oE	20

Frequency: 2/year

Course components

Lecture/Exercise

Objectives

Contents

- Digital systems
 - Description
 - Schematic Design
 - HDL
 - Gajski-Kuhn systematic for HDL
 - Structure
 - Hierarchical Digital Design
 - SOPC Design
 - Behavior
 - Switching networks
 - State machines
 - Algorithmic Behavior
 - Technology (see Implementation)
 - Automata
 - State machine
 - Programmable Processor
 - Implementation
 - CMOS Circuits
 - PLD
 - PLS
 - CPLD
 - FPGA
 - ASIC
- Computer Systems
 - Sequential Computing
 - Principal Modells
 - von Neumann
 - Harvard
 - Processor Examples

- CISC
 - Intel X86
 - RISC
 - e.g. Altera NIOS II
- Stack Machine
 - JVM
- Programming support
 - Runtime system
 - Variable handling for procedural languages
 - OS support
 - Memory Management
 - Cache
 - MMU
 - Virtual Memory
 - Interrupts
 - Timer
- Parallel Computing
 - Architectural Aspects
 - Taxonomies
 - NUMA architectures
 - COW architectures
 - Programming parallel Machines
 - Paradigms of parallel programming
 - Standards for high performance computing (HPC)

Acquired Skills

- Design and Implementation of a hierarchical digital system
 - Designing Control with State machines
 - Interfacing to libraries
 - Algorithmic data processing
- Low-level programming of a processor
 - Assembler programming
 - Using Interrupt and Timer
 - Interfacing to hardware system description
- Parallel Programming
 - Implementation using a standard for HPC
 - Performance Evaluation

Additional Component Assessment

<u>Lab</u>

Objectives

Contents

- Digital Design
 - Development of a hierarchical digital design
 - Test using test vectors
 - error correction
- Assembler programming of SOPC system
 - Programming simple algorithms in Assembler
 - Translating state machines into Assembler programs
 - Using timer and interrupt
 - Testing and debugging
 - Comparison digital system to SOPC system
- Parallel programming
 - Parallelization of a program using a COW
 - Coding and debugging
 - Performance measurement

- Designing an IT system using various technologies
 - Digital technology based on HDL
 - SOPC technology combined with Assembler programming
- Exploring the potential of parallel processsing
 - Using a HPC programming standard
 - Performance evaluation of a parallel implementation

Operational Competences

- Extraction of relevant information from task description
- Implementation of
 - digital system
 - low level programming system
 - parallel system

Additional Component Assessment

Туре			
fPS	supervised problem solving (4h)		
fSC	supervised scenario study (20 h)		

Contribution to course grade		
fSC	attestation	
fPS	attestation	

Frequency: 1/year

Das Urheberrecht © liegt bei den mitwirkenden Autoren. Alle Inhalte dieser Kollaborations-Plattform sind Eigentum der Autoren.

FW FOSWIKI

Ideen, Anfragen oder Probleme bezüglich Foswiki? Feedback senden