Lehrveranstaltungshandbuch Digital Signal Processing 
Verantwortlich: Prof. Dr.-Ing. Harald Elders-Boll
  Lehrveranstaltung 
  Befriedigt Modul (MID) 
  
  Organisation 
  
    
      
        
          | Version | 
          
            | erstellt | 
            2013-04-25 | 
           
          
            | VID | 
            2 | 
           
          
            | gültig ab | 
            WS 2012/13 | 
           
          
            | gültig bis | 
             | 
           
         
       | 
                | 
      
        
          | Bezeichnung | 
          
            | Lang | 
            Digital Signal Processing | 
           
          
            | LVID | 
            F07_DSP | 
           
          
            | LVPID (Prüfungsnummer) | 
             | 
           
         
       | 
    
  
  
    
      
        
          | Semesterplan (SWS) | 
          
            | Vorlesung | 
            2 | 
           
          
            | Übung (ganzer Kurs) | 
            1 | 
           
          
            | Übung (geteilter Kurs) | 
             | 
           
          
            | Praktikum | 
            1 | 
           
          
            | Projekt | 
             | 
           
          
            | Seminar | 
             | 
           
          
            | Tutorium (freiwillig) | 
             | 
           
         
       | 
           | 
      
        
          | Präsenzzeiten | 
          
            | Vorlesung | 
            30 | 
           
          
            | Übung (ganzer Kurs) | 
            15 | 
           
          
            | Übung (geteilter Kurs) | 
             | 
           
          
            | Praktikum | 
            15 | 
           
          
            | Projekt | 
             | 
           
          
            | Seminar | 
             | 
           
          
            | Tutorium (freiwillig) | 
             | 
           
         
       | 
           | 
      
        
          | max. Teilnehmerzahl | 
          
            | Übung (ganzer Kurs) | 
            15 | 
           
          
            | Übung (geteilter Kurs) | 
             | 
           
          
            | Praktikum | 
            15 | 
           
          
            | Projekt | 
            15 | 
           
          
            | Seminar | 
             | 
           
         
       | 
    
  
Gesamtaufwand: 150
  Unterrichtssprache 
  
  Niveau 
  
  Notwendige Voraussetzungen 
 
-  No formal requirements, but students will be expected to be familiar with: 
-  Basic Knowledge of Signals and Systems 
-  Continuous-Time LTI-Systems and Convolution
  -  Fourier-Transform
 
 
  -  Basic Knowledge of Probability and Random Variables
 
 
 
 
  Literatur 
 
-  John G. Proakis and Dimitris K. Manolakis. Digital Signal Processing  (4th Edition). Prentice Hall, 2006.
  -  Alan V. Oppenheim, Ronald W. Schafer. Discrete-Time Signal Processing (3rd Edition). Prentice Hall, 2007.
  -  Vinay Ingle and John Proakis. Digital Signal Processing using MATLAB. Cengage Learning Engineering, 2011. 
 
 
  Dozenten 
 
-  Prof.Dr. Harald Elders-Boll
 
 
  Wissenschaftliche Mitarbeiter 
  
  Zeugnistext 
Digital Signal Processing
  Kompetenznachweis 
  
    | Form | 
    
      | sMP | 
      80% (mündliche Prüfung) | 
    
  
  
Intervall: 2-3/Jahr
  Lehrveranstaltungselemente 
  Vorlesung / Übung 
  Lernziele  
  Lerninhalte (Kenntnisse) 
 
-  Signals, Systems and Digital Signal Processing 
-  Basic Elements of DSP Systems
  -  Classification of Signals 
-  Continuous-Time and Discrete-Time Signals
  -  Deterministic and Random Signals
  -  Even and Odd Signals
  -  Periodic and Aperiodic Signals
  -  Energy and Power of Signals
 
 
  -  Some Fundamental Signals
 
 
  -  Discrete-Time Linear Time-Invariant Systems 
-  Difference Equations
  -  Discrete-Time Convolution
  -  Unit-Pulse and Impulse Response
  -  Basic Systems Properties: Causality, Stability, Memory
 
 
  -  Ideal Sampling and Reconstruction 
-  Ideal Sampling and the Sampling Theorem
  -  Aliasing
 
 
  -  Fourier-Transform of Discrete-Time Signals 
-  Eigenfunctions of Discrete-Time LTI Systems
  -  Frequency response of Discrete-Time LTI Systems
  -  The Fourier-Transform of Discrete-Time Signals
  -  Ideal Continuous-Time Filters
 
 
  -  The z-Transform 
-  The Two-sided z-Transform
  -  Properties of the z-Transform
  -  The Inverse z-Transform
  -  Analysis of LTI Systems using the z-Transform
 
 
  -  Discrete Fourier-Transform 
-  Sampling the DTFT
  -  The DFT and the Inverse DFT
  -  The Fast Fourier Transform  
  -  Linear Convolution Using the FFT  
 
 
  -  Design of Digital Filters 
-  Design of FIR Filters
  -  Design of IIR Filters
 
 
  -  Random Signals 
-  Review of Probablity and Random Variables
  -  Ensemble Averages
  -  Correlation Functions
  -  Stationary and Ergodic Processes
  -  Power Spectral Density
  -  Transmission of Random Signals over LTI Systems
 
 
  -  Advanced Sampling Techniques 
-  Quantization and Encoding
  -  Sampling of Bandpass Signals
  -  Sampling of Random Signals
  -  Sample Rate Conversion 
-  Sample Rate Reduction by an Integer Factor
  -  Sample Rate Increase by an Integer Factor
  -  Sample Rate Conversion by a Rational Factor 
 
 
  -  Oversampling and Noise Shaping
 
 
  -  Optimum Linear Filters 
-  Linear Prediction
  -  The Wiener Filter 
-  Orthogonality Principle
  -  FIR Wiener Filter
  -  IIR Wiener Filter
 
 
 
 
  -  Spectrum Estimation 
-  The Periodogram  
  -  Eigenanalysis Algorithms 
-  MUSIC Algorithm
  -  ESPRIT Algorithm
 
 
 
 
 
 
  Fertigkeiten 
 
-  Students understand the fundamentals of discrete-time signals and systems
  -  Students can analyse the frequency content of a given signal using the appropriate Fourier-Transform and methods for spectrum estimation
  -  Analysis of discrete-time LTI Systems 
-  Students can calculate the output signal via convolution
  -  Students can determine the frequency response of a given system
  -  Students can characterize a given system in the frequency domain and in the z-domain
 
 
  -  Implementation of discrete-time LTI systems 
-  Students can implement the convolution sum in software
  -  Students can implement different structures for IIR systems in software
  -  Sudents can use the FFT to implement an FIR system
 
 
  -  Analyze effects of practical sampling 
-  Quantization noise
  -  Aliasing
  -  Trade-off pros and cons of advanced implementations like noise shaping
 
 
 
 
  Begleitmaterial  
 
-  elektronische Vortragsfolien zur Vorlesung (lecture slides as pdf-file)
  -  elektronische Übungsaufgabensammlung (list of problems and solutions manual as pdf-files)
 
 
  Besondere Voraussetzungen  
  Besondere Literatur  
  Besonderer Kompetenznachweis  
  
    | Form | 
    
      | bK | 
      2-3 eTests je 20min (je 1x wiederholbar) | 
    
    
      | bÜA | 
      Präsenzübung und Selbstlernaufgaben | 
    
  
  
    | Beitrag zum LV-Ergebnis | 
    
      | bK | 
      20% | 
    
    
      | bÜA | 
      unbenotet | 
    
  
Intervall: 1/Jahr
  Praktikum 
  Lernziele  
  Lerninhalte (Kenntnisse) 
 
-  Review of Probablity and Random Variables 
-  Moments, Averages and Distribution Functions
 
 
  -  Random Signals 
-  Ensemble Averages
  -  Correlation Functions
  -  Stationary and Ergodic Processes
  -  Power Spectral Density
  -  Transmission of Random Signals over LTI Systems
 
 
  -  Sampling 
-  Sampling and coding for speech and/or audio signals
 
 
 
 
  Fertigkeiten 
 
-  Analysis of random variables by means of 
-  Mean and moments
  -  Distribution
 
 
  -  Analysis of random signals 
-  Determine whether a given random signal is stationary or not
  -  Analyse whether a random signal contains discrete harmonic components 
-  by using the autocorrelation function
  -  by using the power spectral density
 
 
 
 
  -  Combatting noise 
-  Remove or suppress high-frequency noise from low-pass signals
 
 
  -  Abilty to trade-off different methods for digital coding of speech and audio signals
  -  
  -  Determine the quatization noise and the SNR for different sampling schemes
 
 
  Begleitmaterial  
 
-  elektronische Beschreibung der Praktikums-Versuche (Instructions for lab experiments as pdf-files)
 
 
  Besondere Voraussetzungen  
  Besondere Literatur  
  Besonderer Kompetenznachweis  
  
    | Form | 
    
      | bSZ | 
      Praktikum (Lab Experiments) | 
    
  
  
    | Beitrag zum LV-Ergebnis | 
    
      | bSZ | 
      Voraussetzung für Modulprüfung (prerequisite for final exam) | 
    
  
Intervall: 1/Jahr
 
 
Das Urheberrecht © liegt bei den mitwirkenden Autoren. Alle Inhalte dieser Kollaborations-Plattform sind Eigentum der Autoren. 
 Ideen, Anfragen oder Probleme bezüglich Foswiki? 
Feedback senden