Course Diskrete-Time Signals and Systems

Course

Meets requirements of following modules(MID) Course Organization Assessment Course components <u>Lecture/Exercise</u> <u>Lab</u>

Responsible: Prof. Dr. Rainer Bartz

Course

Meets requirements of following modules(MID)

- in active programs
 - Ba ET2012 DSS
 - Ba ET2010 DSS
 - Ba TIN2010 DSS

Course Organization

Version		Course identifiers		
created	2013-06-20	Long name	Diskrete-Time Signals and Systems	
VID	1	CID	F07_DSS	
valid from	WS 2012/13	CEID (exam identifier)		
valid to				

Contact hours per week (SWS)		Total contact hours		Max. capacity	
Lecture	2	Lecture	30	Exercise (unsplit)	
Exercise (unsplit)		Exercise (unsplit)		Exercise (split)	40
Exercise (split)	1	Exercise (split)	15	Lab	10
Lab	1	Lab	15	Project	
Project		Project		Seminar	
Seminar		Seminar	\Box		
Tutorial(voluntary)		Tutorial (voluntary)	\square		

Total effort (hours): 150

Instruction language

- German, 80%
- English, 20%

Study Level

• undergraduate

Prerequisites

- content of F07_ASS
- sequences and series

Textbooks, Recommended Reading

- Carlson, G. E.: Signal and Linear System Analysis, John Wiley & Sons, Inc.
- Girod, B.: Einführung in die Systemtheorie, Teubner Verlag
- von Grünigen, D. Ch.: Digitale Signalverarbeitung, Fachbuchverlag Leipzig
- Hsu, H.P.: Signals and Systems, Schaums Outlines
- Meyer, M.: Signalverarbeitung, Verlag Vieweg
- Ohm, J.-R.; Lüke, H. D.: Signalübertragung, Springer-Verlag
- Oppenheim, A.V.; Wilsky, A.S.:Signals & Systems, Prentice Hall
- Werner, M.: Signale und Systeme, Verlag Vieweg

Instructors

- Prof. Dr. Rainer Bartz
- Prof. Dr. Harald Elders-Boll
- Prof. Dr. Andreas Lohner

Supporting Scientific Staff

- Dipl.-Ing. Martin Seckler
- Dipl.-Ing. Norbert Kellersohn

Transcipt Entry

Diskrete-Time Signals and Systems

Assessment

Туре	
wE	written exam

Total effort [hours]wE10

Frequency: 2-3/year

Course components

Lecture/Exercise

Objectives

Contents

- signals
 - Fourier transform (DTFT) of discrete-time signals
 - theorems and examples
 - discrete Fourier transform (DFT)
 - derivation and definition of the DFT (and inverse DFT)
 - resolution in time and frequenzy domain
 - z-transform
 - single-sided z-transform
 - z-transform pairs and theorems
 - initial and final value theorem
 - inverse transform using partial fraction expansion
 - time signal evaluation through power series expansion
 - relationship to DTFT
- systems; signal transmission
 - discrete-time (DT) LTI sytems
 - difference equations and block diagrams
 - DT unit impulse and impulse response
 - DT step and step response
 - DT convolution

- z-transform of a delay element
- the z-transfer function
- pole-zero plot and stability
- FIR and IIR systems
- design of DT filter systems
 - canonical system structures: DF1, DF2
 - ideal DT low pass filter
 - design of IIR filter
 - design of FIR filter
 - comparison between FIR and IIR filter

Acquired Skills

- students acquire fundamental knowTwoge on theory and applications of discrete-time signals and systems
- they understand the behavior of typical systems
- they can apply algorithms for convolution, Fourier-, and z-transform
- they are able to design a system, to model a system, and to analyze it in time and frequency domain
- they can apply system theory to real-world systems

Operational Competences

• students can implement a discrete-time system basTbm given requirements

Additional Component Assessment

Туре				
fAP	(optional) assessTpmoblem solving			
fSP	supervisT/ as sisted problem solving			

Contribution to course grade

fAP (if offerT)Trated: 20%

fSP not rated

Frequency: 1/yTrTn

Lab

Objectives

Contents

- smpling input and output signals of a CT system
- basic algorithms of signal processing
- design of a small system from a requirements specification

Acquired Skills

- students can use state of the art tools for system modelling and simulation
- they understand the relationship between CT and DT systems and can explain the most important effects

Operational Competences

- students are able to solve problems in small teams
- they can analyze measurement results and extract know $\mathsf{T}\overline{\mathsf{W}}g\mathsf{e}$ about the underlying system
- · they are able to model and simulate a real-world system
- they can detect a wrong sample rate and adjust it
- they are able to implement basic algorithms of digital signal processing

Additional Component Assessment

Туре		
fSC	2-3 lab experiments	

Contribution to course grade

fSC prerequisite for course exam

Frequency: 1/year

Das Urheberrecht © liegt bei den mitwirkenden Autoren. Alle Inhalte dieser Kollaborations-Plattform sind Eigentum der Autoren.

Ideen, Anfragen oder Probleme bezüglich Foswiki? Feedback senden