Course Industrial Image Processing

Course

Meets requirements of following modules(MID) Course Organization Assessment Course components <u>Lecture/Exercise</u> <u>Lab</u>

Responsible: Prof. Dr. Thieling

Course

Meets requirements of following modules(MID)

- in active programs
 - Ba ET2012 IBV
 - Ba TIN2012 IBV

Course Organization

Version		Course identifiers		
created	2011-10-14	Long name	Industrial Image Processing	
VID	1	CID	F07_IBV	
valid from	WS 2012/13	CEID (exam identifier)		
valid to				

Contact hours per week (SWS)		Total contact hours		Max. capacity	
Lecture	2	Lecture	30	Exercise (unsplit)	
Exercise (unsplit)		Exercise (unsplit)		Exercise (split)	30
Exercise (split)		Exercise (split)		Lab	15
Lab	2	Lab	30	Project	
Project		Project		Seminar	
Seminar		Seminar		<u>.</u>	
Tutorial(voluntary)		Tutorial (voluntary)			

Total effort (hours): 150

Instruction language

• Deutsch

Study Level

• Bachelor

Prerequisites

- basic skills in signal processing
- basic skills in Java and/or C
- basic skills in analysis and linear algebra

Textbooks, Recommended Reading

• Rafael C. Gonzalez, Richard E. Woods, Digital Image Processing, Prentice Hall

- Scott E Umbaugh, COMPUTER VISION and IMAGE PROCESSING: A Practical Approach Using CVIPtools, Prentice Hall
- Wolfgang Abmayer, Einführung in die digitale Bildverarbeitung, Teubner

Instructors

• Prof. Dr. Thieling

Supporting Scientific Staff

• n.N.

Transcipt Entry

Industrial Image Processing

Assessment

Туре					
οE	normal case (except on large numbers of assessments: wE				

Total effort [hours]				
oE	10			

Frequency: 3/Jahr

Course components

Lecture/Exercise

Objectives

Lerninhalte (Kenntnisse)

- image construction, global image properties, and access to image data
 - graylevel and color images
 - global image properties,
 - mean value, variance, entropy
 - histogram, cumulative histogram
 - development environment
 - software design tools
 - compiler
 - linker
 - debugger
 - softwaretools for image processing and image analysis
 - softare-based access to image data and parameters
 - overview of the available ip-modules (moduls dor image processing and image analysis)
 - design and implementation of own ip-moduls
 - design of algorithmic chains based on ip-modules using visual programming
- gray level transformation
 - linear gray level transformation, histogram spreading
 - non-linear gray level transformation
 - histogram equalization
 - local histogram equalization
 - look-up-table
- analysis and processing of color images
 - technical and human color perception
 - additive and subtractive color mixing
 - RGB color space
 - HSI color space
 - transformation RGB to HSI and vise versa

- rank-order operators (non-linear filtering)
 - max, min, median
 - morphologische Operatoren
 - erosion, dilation
 - opening, closing
 - locating structures
- analysis and processing in frequency domain
 - fourier analysis and synthesis of one-dimensional digital signals
 - real spectrum, imaginary spectrum
 - amplitude spectrum, phase spectrum
 - filtering in frequency domain
 - fourier analysis and synthesisf of images
 - real spectrum, imaginary spectrum
 - amplitude spectrum, phase spectrum
 - filtering in spatial domain
 - non directional filter
 - directional filter
 - inverse filtering
- linear filtering in spatial domain
 - convolution, convolution, transfer function
 - typical convolution maks (mean, gauß, differencial-operator, sobel-operator, laplace-operator)
 - gradient and its calculation using differential-operator and sobel-operator
 - analysis and evaluation of the operator in the frequency domain
- Tracking
 - normalized cross-correlation
 - without prediction
 - with prediction (kalman filter)
- measuring of subpixel edges
 - one-dimensional
 - two-dimensional using gradient

Acquired Skills

- the presented methods for image enhancement can be
 - named
 - described
 - · delineated in terms of application areas
 - · evaluated in terms of advantages and disadvanteges
 - problemspecific parameterized
- the presented color spaces and corresponding algorithms can be
 - named
 - described
 - · delineated in terms of application areas
 - evaluated in terms of advantages and disadvanteges
 - problemspecific parameterized
- the presented methods for non liniar filtering can be
 - named
 - described
 - · delineated in terms of application areas
 - · evaluated in terms of advantages and disadvanteges
 - problemspecific parameterized
- Spectra of images and / or convolution masks can be
 - analyzed
 - designed
 - discussed
- the presented methods for linear filtering can be (space and frequency domain)
 - named
 - described
 - delineated in terms of application areas
 - evaluated in terms of advantages and disadvanteges
 - problemspecific parameterized

Additional Component Assessment

• none

Lab

Objectives

Acquired Skills

- purposeful handling of the software development environment
- purposeful handling of the softwaretools for image processing and image analysis

Operational Competences

- deal with complex tasks in a small team
- derive complex solutions that can be implemented using image processing and image analysis

Additional Component Assessment

• none

Das Urheberrecht © liegt bei den mitwirkenden Autoren. Alle Inhalte dieser Kollaborations-Plattform sind Eigentum der Autoren.

Ideen, Anfragen oder Probleme bezüglich Foswiki? Feedback senden

FW FOSWIKI