Course Source and Channel Coding
Responsible: Prof.Dr.Dettmar
Course
Meets requirements of following modules(MID)
Course Organization
Version |
created |
2011-11-25 |
VID |
2 |
valid from |
WS 2012/13 |
valid to |
|
|
|
Course identifiers |
Long name |
Source and Channel Coding |
CID |
F07_QK |
CEID (exam identifier) |
|
|
Contact hours per week (SWS) |
Lecture |
2 |
Exercise (unsplit) |
|
Exercise (split) |
2 |
Lab |
1 |
Project |
|
Seminar |
|
Tutorial(voluntary) |
|
|
|
Total contact hours |
Lecture |
30 |
Exercise (unsplit) |
|
Exercise (split) |
30 |
Lab |
15 |
Project |
|
Seminar |
|
Tutorial (voluntary) |
|
|
|
Max. capacity |
Exercise (unsplit) |
|
Exercise (split) |
40 |
Lab |
18 |
Project |
|
Seminar |
|
|
Total effort (hours): 150
Instruction language
Study Level
Prerequisites
- Linear Algebra
- Stochastics
- basics in digital communications
- Matlab basics
Textbooks, Recommended Reading
- B. Sklar Digital Communications, Prentice Hall, 2001
- Proakis: Digital Communications, Mc Graw Hill, 2000
- Roppel, Grundlagen der digitalen Kommunikationstechnik, Hanser, 2006
- Neubauer, Informationstheorie und Quellencodierung, Schlembach, 2006
- Neubauer, Kanalcodierung, Schlembach, 2006
- Lin, Costello, Error Control Coding, Prentice Hall 2004
Instructors
Supporting Scientific Staff
Transcipt Entry
source and channel coding
Assessment
Type |
oE |
Regelfall (bei großer prüfungszahl sK) |
Total effort [hours] |
wE |
10 |
Frequency: 2 per year
Course components
Lecture/Exercise
Objectives
Contents
- Introduction to information theory
- information, entropy, redundancy
- source coding theorem
- channal capacity, transinformation
- channel coding theorem
- performance, potential
- bascis on source coding
- sources with and without memory
- entropie computation
- Markov sources
- practical source codes
- Huffman Codes
- Lempel-Ziv Codes
- arithmetical Codes
- Irrelevance reduction
- Overview
- Quantisation
- PCM
- DPCM
- ADPCM
- Delta Modulation
- Sigma Delta Modulator
- basics on channel coding
- basics, finite fields
- binary linear block codes
- basics and definitions
- Hamming Codes
- Reed Muller Codes
- Repetition and parity check codes
- convolutional codes
- basics, definitions
- encoder
- state diagram and trellis
- distance profile
- catastrophical codes
- decoding
- standard array
- majority logic decoding
- Viterbi decoding
- coded modulation
- trellis coded modulation
- block coded modulation
- link budget
- link budget computation
- estimate the functionality of a link
- System Trade-offs
- spread spectrum
- basic principles
- DS-SS
- FH-SS
- applications related to signal seperation, signal suppression, time and location, multiuser-communications
- diversity
- antenna diversity
- interleaving
- Alamouti STC
Acquired Skills
- analyse telecom systems
- discuss and understand performance parameters of transmission systems
- apply and compare algorithms for data compression and error control coding
- apply theoretical knowledge to practical problems
- understand and solve problems self-contained
Additional Component Assessment
Lab
Objectives
Acquired Skills
- analyze and simulate telecom systems and methods
- evaluate the performance of standard algorithms in source and channel coding
- discuss and interprete simulation results
Operational Competences
- adapt SW to similar problems
- use the Matlab Communications Toolbox, write own scripts
- experiment with SW tools
- compare different technical solutions
Additional Component Assessment
Type |
bK |
3 eTests each 15 min |
fIN |
interview on specific topics |
Contribution to course grade |
fAP |
assessed problem solving |
fIN |
interview on specific topics |
o |
prerequisite to course exam |
Frequency: 1/year
Das Urheberrecht © liegt bei den mitwirkenden Autoren. Alle Inhalte dieser Kollaborations-Plattform sind Eigentum der Autoren.
Ideen, Anfragen oder Probleme bezüglich Foswiki?
Feedback senden