Course F07_Wissenschaftliches Rechnen


Responsible: Prof. Dr. Beate Rhein

Course

Meets requirements of following modules(MID)

Course Organization

Version
created 2012-04-12
VID 1
valid from SS 2015
valid to
Course identifiers
Long name F07_Wissenschaftliches Rechnen
CID F07_WR_en
CEID (exam identifier)

Contact hours per week (SWS)
Lecture
Exercise (unsplit)
Exercise (split)
Lab
Project
Seminar
Tutorial(voluntary)
Total contact hours
Lecture
Exercise (unsplit)
Exercise (split)
Lab
Project
Seminar
Tutorial (voluntary)
Max. capacity
Exercise (unsplit)
Exercise (split)
Lab
Project
Seminar

Total effort (hours): 150

Instruction language

  • German

Study Level

  • Graduate

Prerequisites

Textbooks, Recommended Reading

Instructors

  • Prof. Dr. Beate Rhein

Supporting Scientific Staff

Transcipt Entry

en

Assessment

Type
oE normal case (except on large numbers of assessments: wE

Total effort [hours]
oE

Frequency: 1/year


Course components

Lecture/Exercise

Objectives

Contents
  • Preliminaries (PFK 2, PFK 4)
  • Approximation methods (PFK 5, PFK 6)
    • Meta-modelling methods
    • Regression methods
    • Design of experiments
  • Multi-objective optimization (PFK 4, PFK 5, PFK 6)
    • Modeling
    • Pareto front
    • Algorithms
    • Visualization
  • Cluster analysis (PFK 5, PFK 6)
    • Partitioning clustering
    • Hierarchical clustering
    • Density-based clustering
    • Cluster evaluation

Acquired Skills
  • choose the appropriate method for a given application, implement it cleverly with an efficient numerical algorithm to programs optimized in time and space complexity (PFK 2, PFK 6)
  • know approximation methods, select and apply a suitable method for a problem (PFK 5)
  • formulate a practical problem as an multi-objective optimzation problem and solve it (PFK 5)
  • know methods for cluster analysis, select a suitable algorithm for a problem and apply it (PFK 5)

Additional Component Assessment

Type
fPS

Contribution to course grade
fPS

Frequency:

Lab

Objectives

Acquired Skills
  • Use and programming of approximation methods in MATLAB
  • Use and programming of multi-objective optimization in MATLAB
  • Use and programming of cluster analysis in MATLAB

Operational Competences
  • Implement numerical methods efficiently
  • Rate algorithms in complexity

Additional Component Assessment

Type
oR prerequisite to course exam

Contribution to course grade
oR prerequisite to course exam

Frequency: 1/year

Diese Seite läuft auf FoswikiDas Urheberrecht © liegt bei den mitwirkenden Autoren. Alle Inhalte dieser Kollaborations-Plattform sind Eigentum der Autoren.
Ideen, Anfragen oder Probleme bezüglich Foswiki? Feedback senden