Hello
WikiGuest
Einloggen
oder
Registrieren
Users
Studium
Lehrveranstaltungen
Sie sind hier:
Foswiki
>
F07_Studium Web
>
MaCSN2012_DSP
(Revision 9) (Quelltext-Ansicht)
<!-- * Set USERSTYLEURL = %PUBURLPATH%/%WEB%/DokumentFormat/fonts.css --> ---+!! %FORMFIELD{"TopicClassification"}% %FORMFIELD{"Bezeichnung"}% %TOC{depth="3"}% %STARTSECTION{"no_toc"}% ----- *Verantwortlich:* Prof. Dr.-Ing. Harald Elders-Boll ---++ Modul ---+++ Anerkennbare Lehrveranstaltung (LV) * [[F07_DSP]] ---+++ Organisation <sticky> <table border="0"> <tr valign="top"> <td> <table border="1" cellpadding="2" cellspacing="0"> <th colspan="2">Bezeichnung</th> <tr> <td>Lang</td> <td>%FORMFIELD{"Bezeichnung"}%</td> </tr> <tr> <td>MID</td> <td>MaCSN2012_DSP</td> </tr> <tr> <td>MPID</td> <td/> </tr> </table> </td> <td> </td> <td> <table border="1" cellpadding="2" cellspacing="0"> <th colspan="2">Zuordnung</th> <tr> <td>Studiengang</td> <td>%FORMFIELD{"Studiengang"}%</td> </tr> <tr> <td>Studienrichtung</td> <td>%FORMFIELD{"Studienrichtung"}%</td> </tr> <tr> <td>Wissensgebiete</td> <td>G_VMINT</td> </tr> </table> </td> <td> </td> <td> <table border="1" cellpadding="2" cellspacing="0"> <th colspan="2">Einordnung ins Curriculum</th> <tr> <td>Fachsemester</td> <td>%FORMFIELD{"Fachsemester"}%</td> </tr> <tr> <td>Pflicht</td> <td>%FORMFIELD{"Pflicht"}%</td> </tr> <tr> <td>Wahl</td> <td>%FORMFIELD{"Wahl"}%</td> </tr> </table> </td> <td> </td> <td> <table border="1" cellpadding="2" cellspacing="0"> <th colspan="2">Version</th> <tr> <td>erstellt</td> <td>2012-01-05</td> </tr> <tr> <td>VID</td> <td>1</td> </tr> <tr> <td>gültig ab</td> <td>WS 2012/13</td> </tr> <tr> <td>gültig bis</td> <td/> </tr> </table> </td> </tr> </table> </sticky> ---++++ Zeugnistext ---+++++ de Digital Signal Processing ---+++++ en Digital Signal Processing ---++++ Unterrichtssprache Deutsch oder Englisch ---+++ Modulprüfung <sticky> <table border="1" cellpadding="2" cellspacing="0"> <th colspan="2">Form der Modulprüfung</th> <tr> <td>sMP</td> <td>80% (mündliche Prüfung)</td> </tr> </table> </sticky> <sticky> <table border="1" cellpadding="2" cellspacing="0"> <th colspan="2">Beiträge ECTS-CP aus Wissensgebieten</th> <tr> <td>%FORMFIELD{"Wissensgebiet1Text"}%</td> <td>%FORMFIELD{"Wissensgebiet1Value"}%</td> </tr> <tr> <td>Summe</td> <td>%FORMFIELD{"ECTS"}%</td> </tr> </table> </sticky> *Aufwand [h]:* %FORMFIELD{"Aufwand"}% ----- ---++ Prüfungselemente %STARTSECTION{"Vorlesung / Übung"}% ---+++ Vorlesung / Übung <sticky> <table border="1" cellpadding="2" cellspacing="0"> <th colspan="2">Form Kompetenznachweis</th> <tr> <td>bK</td> <td>2-3 eTests je 20min (je 1x wiederholbar)</td> </tr> <tr> <td>bÜA</td> <td>Präsenzübung und Selbstlernaufgaben</td> </tr> </table> </sticky> <sticky> <table border="1" cellpadding="2" cellspacing="0"> <th colspan="2">Beitrag zum Modulergebnis</th> <tr> <td>bK</td> <td>20%</td> </tr> <tr> <td>bÜA</td> <td>unbenotet</td> </tr> </table> </sticky> ---++++ Spezifische Lernziele ---+++++ Kenntnisse * Signals, Systems and Digital Signal Processing (PFK.5, PFK.6, PFK.8) * Discrete-Time Linear Time-Invariant Systems * Difference Equations (PFK.5, PFK.6) * Discrete-Time Convolution (PFK.5, PFK.6) * Unit-Pulse and Impulse Response (PFK.5, PFK.6) * Basic Systems Properties: Causality, Stability, Memory (PFK.5, PFK.6) * Ideal Sampling and Reconstruction * Ideal Sampling and the Sampling Theorem (PFK.6, PFK.8) * Aliasing (PFK.6, PFK.8) * Fourier-Transform of Discrete-Time Signals (PFK.6, PFK.7) * Frequency response of Discrete-Time LTI Systems * The Fourier-Transform of Discrete-Time Signals * The z-Transform (PFK.6, PFK.7) * The Two-sided z-Transform * Properties of the z-Transform * The Inverse z-Transform * Analysis of LTI Systems using the z-Transform * Discrete Fourier-Transform (PFK.6, PFK.7) * The DFT and the Inverse DFT * The Fast Fourier Transform * Design of Digital Filters (PFK.6, PFK.8) * Design of FIR Filters * Design of IIR Filters * Random Signals (PFK.5, PFK.6, PFK.7) * Ensemble Averages * Correlation Functions * Stationary and Ergodic Processes * Power Spectral Density * Transmission of Random Signals over LTI Systems * Advanced Sampling Techniques (PFK.6, PFK.7) * Quantization and Encoding * Sampling of Random Signals * Sample Rate Conversion * Oversampling and Noise Shaping * Optimum Linear Filters (PFK.6, PFK.8) * Linear Prediction * The Wiener Filter * Adaptive Filters * Spectrum Estimation (PFK.6, PFK.7) * The Periodogram * Eigenanalysis Algorithms ---+++++ Fertigkeiten * Students understand the fundamentals of discrete-time signals and systems (PFK.6) * Students can analyse the frequency content of a given signal using the appropriate Fourier-Transform and methods for spectrum estimation (PFK.6, PFK.7) * Analysis of discrete-time LTI Systems (PFK.6, PFK.7) * Students can calculate the output signal via convolution * Students can determine the frequency response of a given system * Students can characterize a given system in the frequency domain and in the z-domain * Implementation of discrete-time LTI systems (PFK.1, PFK.2, PFK.6, PFK.8) * Students can implement the convolution sum in software * Students can implement different structures for IIR systems in software * Sudents can use the FFT to implement an FIR system * Analyze effects of practical sampling (PFK.6, PFK.7) * Quantization noise * Aliasing * Trade-off pros and cons of advanced implementations like noise shaping ---++++ Exemplarische inhaltliche Operationalisierung The follwowing subjects can be presented quickly assuming students have had prior exposure to discrete-time systems:<br> * Signals, Systems and Digital Signal Processing * Discrete-Time Linear Time-Invariant Systems * Ideal Sampling and Reconstruction * Fourier-Transform of Discrete-Time Signals * The z-Transform The follwoing subjects should be presented in depth:<br> * Discrete Fourier-Transform<br> * Design of Digital Filters<br> * Random Signals<br> * Advanced Sampling Techniques<br> The course should be complemented with selected topics from the following advanced subjects:<br> * Optimum Linear Filters * Spectrum Estimation * Adaptive Filters The theory should be illustrated and put into practise by MATLAB code of the presented methods and algorithms<br> <br> %ENDSECTION{"Vorlesung / Übung"}% %STARTSECTION{"Praktikum"}% ---+++ Praktikum <sticky> <table border="1" cellpadding="2" cellspacing="0"> <th colspan="2">Form Kompetenznachweis</th> <tr> <td>bSZ</td> <td>Praktikum (Lab Experiments)</td> </tr> </table> </sticky> <sticky> <table border="1" cellpadding="2" cellspacing="0"> <th colspan="2">Beitrag zum Modulergebnis</th> <tr> <td>bSZ</td> <td>Voraussetzung für Modulprüfung (prerequisite for final exam)</td> </tr> </table> </sticky> ---++++ Spezifische Lernziele ---+++++ Lerninhalte * Random Signals (PFK.5, PFK.6, PFK.7) * Ensemble Averages * Correlation Functions * Stationary and Ergodic Processes * Power Spectral Density * Transmission of Random Signals over LTI Systems * Sampling (PFK.6, PFK.7) * Sampling and coding for speech and/or audio signals ---+++++ Fertigkeiten * Analysis of random signals (PFK.6, PFK.7, PFK.7, PFK.9) * Determine whether a given random signal is stationary or not * Analyse whether a random signal contains discrete harmonic components * by using the autocorrelation function * by using the power spectral density * Combatting noise * Remove or suppress high-frequency noise from low-pass signals (PFK.1, PFK.6, PFK.8) * Abilty to trade-off and implement different methods for digital coding of speech and audio signals (PFK.1, PFK.6, PFK.8) * Determine the quatization noise and the SNR for different sampling schemes (PFK.2, PFK.5, PFK.6, PFK.7) ---++++ Exemplarische inhaltliche Operationalisierung The follwowing subjects can be presented quickly assuming students have had prior exposure to discrete-time systems:<br> * Signals, Systems and Digital Signal Processing * Discrete-Time Linear Time-Invariant Systems * Ideal Sampling and Reconstruction * Fourier-Transform of Discrete-Time Signals * The z-Transform The follwoing subjects should be presented in depth:<br> * Discrete Fourier-Transform<br> * Design of Digital Filters<br> * Random Signals<br> * Advanced Sampling Techniques<br> The course should be complemented with selected topics from the following advanced subjects:<br> * Optimum Linear Filters * Spectrum Estimation * Adaptive Filters The theory should be illustrated and put into practise by MATLAB code of the presented methods and algorithms<br> %ENDSECTION{"Praktikum"}% %ENDSECTION{"no_toc"}%
E
ditieren
|
A
nhang
|
Druckversion (
p
)
|
H
istorie
: r9
<
r8
<
r7
<
r6
|
Querverweise (
b
)
|
Topic anzeigen (
v
)
|
Editieren
w
ikitext
|
M
ehr Topic-Aktionen
Topic-Revision: r9 - 19 Jul 2018,
GeneratedContent
F07_Studium
Einloggen
oder
Registrieren
Werkzeugkasten
Neues Topic anlegen
Index
Suchen
Änderungen
Benachrichtigungen
RSS-Feed
Statistiken
Einstellungen
Webs
F07_Studium
System
Deutsch
English
Das Urheberrecht © liegt bei den mitwirkenden Autoren. Alle Inhalte dieser Kollaborations-Plattform sind Eigentum der Autoren.
Ideen, Anfragen oder Probleme bezüglich Foswiki?
Feedback senden