

Lehrveranstaltungshandbuch SMP

Signalverarbeitung mit Matlab/Python und μC

Version: 2 | Letzte Änderung: 11.09.2019 21:45 | Entwurf: 0 | Status: vom verantwortlichen Dozent freigegeben

- <u>Allgemeine Informationen</u>

Langname	Signalverarbeitung mit Matlab/Python und μC
Anerkennende LModule	SMP BaET, SMP BaTIN
Verantwortlich	Prof. Dr. Harald Elders- Boll Professor Fakultät IME
Gültig ab	Wintersemester 2022/23
Niveau	Bachelor
Semester im Jahr	Wintersemester
Dauer	Semester
Stunden im Selbststudium	78
ECTS	5
Dozenten	Prof. Dr. Harald Elders- Boll Professor Fakultät IME
	Prof. Dr. Uwe Dettmar Professor Fakultät IME
	Prof. DrIng. Christoph Pörschmann Professor Fakultät IME
Voraussetzungen	grundlegende prozedurale Programmierkenntnisse Grundkenntnisse der digitalen Signalverarbeitung: Abtasttheorem, Digitale Filter, Fouriertransformation

Literatur

Welch, Wright, Morrow: Real-Time Digital Signal Processing (CRC Press)

Abschlussprüfung

Details

implementieren die Studierenden eine vorgegebenes Verfahrens der digitalen Signalverarbeitung in Teamarbeit und weisen somit nach, dass sie in der Lage sind Systeme und Anwendungen der Signalverarbeitung in unterschiedichen Anwendungsbereichen entwickeln zu können

In der Projektarbeit

Für die Modulnote werden die Projektarbeit, die Abschlusspräsentation der Projektarbeit und der schriftliche Bericht zur Projektarbeit jeweils nach mehreren Kriterien separat bepunktet und dann aus der Gesamtpunkzahl die Modulnote abgeleitet.

Unterrichtssprache	deutsch und englisch		Mindeststandard	50% der maximal möglichen
separate	Ja			Gesamtpunktzahl.
Abschlussprüfung			Prüfungstyp	mündlicher
		J		Ergebnisbericht
				(Vortrag / Präsentation)

- Vorlesung

Lernziele **Beschreibung Zieltyp** Kenntnisse Prinzipien der digitalen Signalverarbeitung: Abtastung und Rekonstruktion Digitale Filter DFT und FFT Implementierung der Faltung mit Hilfe der FFT Spektralanalyse Signalgenerierung Echtzeitsignalverarbeitung: Interrupt und Polling Blockbasierte Signalverarbeitung Fertigkeiten Grundlagen der digitalen Signalverarbeitung anwenden: Grundlegende Prinzipien der digitalen Signalverarbeitung verstehen und erklären können Unterschiedliche Filter Typen und Implementierungen vergleichen und bewerten können Implementierung und Echtzeitsignalverarbeitung: Grundlegende Problematik der Echtzeitsignalverarbeitung darstellen können Einflussfaktoren auf die Verarbeitungsgeschwindigkeit benennnen können Grundlegende Verfahren zur Echtzeitsignalverarbeitung verstehen und erklären können

Besondere Voraussetzungen

keine

	Beispiel Code für einzelne Themen aus der Vorlesung
Begleitmaterial	elektronische Vortragsfolien zur Vorlesung

Aufwand Präsenzlehre

Тур	Präsenzzeit (h/Wo.)
Vorlesung	1
Tutorium (freiwillig)	0

Praktikum

ernziele	
Zieltyp	Beschreibung
Fertigkeiten	Implementierung einfacher Verfahren der Signalverarbeitung in Python/Matlab und auf Mikroprozessoren.

Aufwand Präsenzlehre Typ Präsenzzeit (h/Wo.) Praktikum 2 Tutorium (freiwillig) 0

Besondere Voraussetzungen

keine

Begleitmaterial	Versuchsanleitungen mit Code Skeletons
Separate Prüfung	Nein

- Projekt

Lernziele **Zieltyp** Beschreibung Fertigkeiten Implementierung in Python/Matlab: Algorithmus in Python/Matlab programmieren, debuggen und optimieren. Implementierung auf einem Mikroprozessor Algorithmus in C auf Zielprozessor programmieren Entwicklungsumgebung kennen und nutzen können Algorithmus auf den verwendeten Hardware effizient realisieren komplexe Aufgaben im Team bewältigen: einfache Projekte planen und steuern Absprachen und Termine einhalten Reviews planen und durchführen Verfahren der Signalverarbeitung auf Zielplatform implementieren: Vorgegebene Verfahren der digitalen Signalverarbeitung verstehen Notwendige Literatur beschaffen und verstehen Mathematisch formulierte Verfahren in Programmcode umsetzen Programm testen, prüfen und optimieren Arbeitsergebnisse darstellen: Präsentation der Ergebnisse der Projektarbeit (in Englisch)

Besondere Voraussetzungen

keine

Installierte Software auf den Laborrechnern Mikroprozessorboards mit Code-Skeletons für kostenfreie Entwicklungsumgebung
Nein

Aufwand Präsenzlehre

Тур	Präsenzzeit (h/Wo.)
Projekt	1
Tutorium (freiwillig)	0

