Modulhandbuch KOGA

Kombinatorische Optimierung und Graphenalgorithmen

Master Technische Informatik 2020

Version: 1 | Letzte Änderung: 25.01.2020 18:05 | Entwurf: 0 | Status: vom Modulverantwortlichen freigegeben | Verantwortlich: Randerath

- <u>Allgemeine Informationen</u>

Anerkannte Lehrveranstaltungen	KOGA Randerath
Gültig ab	Wintersemester 2020/21
Dauer	1 Semester
ECTS	5
Zeugnistext (de)	Kombinatorische Optimierung und Graphenalgorithmen
Zeugnistext (en)	Combinatorial Optimization and Graph Algorithms
Unterrichtssprache	deutsch
abschließende Modulprüfung	Nein

- Allgemeine Informationen

Inhaltliche Voraussetzungen

Handlungsfelder

Komplexe Rechner-, Kommunikations- und Eingebettete Systeme sowie komplexe Software-Systeme unter interdisziplinären Bedingungen entwerfen, realisieren und bewerten

Wissenschaftlich arbeiten und wissenschaftliche Erkenntnisse anwenden und erweitern

undefined

Learning Outcomes

ID **Learning Outcome** LO1 Die Studierenden sind in der Lage Verfahren und Konzepte der Graphentheorie und der Kombinatorischen Optimierung zur Beschreibung und algorithmischen Lösung von Problemstellungen der Informatik, der Technik und des täglichen Lebens anzuwenden. Sie haben die Fertigkeit Verfahren und Konzepte der Graphentheorie und der Kombinatorischen Optimierung zur Beschreibung und algorithmischen Lösung von Problemstellungen der Informatik, der Technik und des täglichen Lebens anzupassen. Sie können algorithmische Denkund Arbeitweisen wie Komplexität von Problemklassen, Effizienz von Algorithmen und Approximation, die sie induktiv an Optimierungsaufgaben in Netzwerken und gewichteten Graphen erlernt haben,

Kompetenzen

	Kompetenz	Ausprägung
	Fachwissen erweitern und vertiefen und Lernfähigkeit demonstrieren	diese Kompetenz wird vermittelt
	Komplexe Systeme und Prozesse analysieren, modellieren, realisieren, testen und bewerten	diese Kompetenz wird vermittelt
•	Aufkommende Technologien einordnen und bewerten können	diese Kompetenz wird vermittelt

anwenden.

Wissenschaftliche diese Kompetenz wird Ergebnisse und vermittelt technische Zusammenhänge schriftlich und mündlich darstellen und verteidigen Probleme diese Kompetenz wird wissenschaftlich vermittelt untersuchen und lösen, auch wenn sie unscharf, unvollständig oder widersprüchlich definiert sind Anerkannte Methoden diese Kompetenz wird vermittelt für wissenschaftliches

Arbeiten beherrschen

Vorlesung / Übungen

Тур	Vorlesung / Übungen
Separate Prüfung	Ja
Exempla- rische inhaltliche Operatio- nalisierung	Anwendung algorithmischer Denk- und Arbeitsweisen: Am Beispiel des Kruskal-Algorithmus zur Bestimmung minimal aufspannender Bäume in gewichteten Graphen wird ein Greedy-Verfahren vorgestellt, welches eine optimale Lösung garantiert. Die Analyse der algorithmischen Lösung dieses Optimierungsproblems führt zur Einführung matroider Strukturen. Hierdurch wird es möglich zu analysieren, wann Greedy- Verfahren

Separate Prüfung		
Benotet	Nein	
Frequenz	Einmal im Jahr	
Konzept	Präsenz- und Selbstlernaufgaben	

© 2022 Technische Hochschule Köln