TH Köln

Lehrveranstaltungshandbuch LMK

Lichtmikroskopie

Version: 1 | Letzte Änderung: 19.09.2019 15:08 | Entwurf: 0 | Status: vom verantwortlichen Dozent freigegeben

- <u>Allgemeine Informationen</u>

Langname	Lichtmikroskopie
Anerkennende LModule	LMK BaET, LMK BaET
Verantwortlich	Prof. Dr. Stefan Altmeyer Professor Fakultät IME
Gültig ab	Wintersemester 2022/23
Niveau	Bachelor
Semester im Jahr	Wintersemester
Dauer	Semester
Stunden im Selbststudium	78
ECTS	5
Dozenten	Prof. Dr. Stefan Altmeyer Professor Fakultät IME
Voraussetzungen	Mathematik: Vektorrechnung komplexe Zahlen Physik / Optik: geometrische Optik Wellenoptik
Unterrichtssprache	deutsch
separate Abschlussprüfung	Ja

Literatur

keine

Abschlussprüfung

Details So weit die

Prüfungszahl nicht zu groß ist, wird eine mündliche Prüfung gegenüber einer schriftlichen Prüfung

bevorzugt.

In der Prüfung werden auf unterstem
Kompetenzniveau
Kenntnisse abgefragt.
Dies sind beispielsweise die Baugruppen, die in jedem Mikroskop enthalten sind, der
Auflicht- und Durchlicht
Strahlengang in einem
Mikroskop mit
Köhler'scher
Beleuchtung, der

enthalten sind, der
Auflicht- und Durchlicht
Strahlengang in einem
Mikroskop mit
Köhler'scher
Beleuchtung, der
Einbauort von
Ringblende und
Phasenring in einem
Zernike
Phasenmikroskop oder
der Grund für die
Richtungssensitivität in
einem Mikroskop mit
Differentiellen

Interferen Kontrast.

Auf nächster Kompetenzstufe werden Fertigkeiten geprüft. Dies kann beispielsweise dadurch erfolgen, dass die erforderlichen technischen Schlüsselparameter von Bauteilen in Mikroskopen berechnet werden, entweder auf der Basis von vorgegebenen Anwendungs-Spezifikationen oder auf der Basis von anderen, bereits verbauten Komponenten. Ebenso kann geprüft werden, ob die Einrichtung der Köhlerschen Beleuchtung begründet(!) in allen Schritten beschrieben werden kann.

Die höchste prüfbare Kompetenzstufe betrifft die Methodenkompetenz. Deren Ausprägung kann überprüft werden, indem ein Anwendungsfall geschildert wird: Eine Aufgabe könnte sein, den Krümmungsradius einer Linsenoberfläche mit einem Mikroskop zu bestimmen. Hier ist die Auswahl des richtigen Mikroskopes entscheidend und auch der Messvorgang und die Auswertung bedürfen einer gut entwickelten Methodenkompetenz. EIne weitere Aufgabe könnte sein, die Phasenverschiebung zwischen zwei Objektstrukturen quatitativ auszumessen.

Mindeststandard

Mindestens 50 % der Fragen richtig beantwortet

Prüfungstyp

mündliche Prüfung, strukturierte Befragung

Vorlesung

Lernziele

Zieltyp Beschreibung Kenntnisse Schärfentiefe geometrisch-optische, gegenstandsseitig Nah- und Fernpunkt hyperfokale Distanz wellenenoptische, bildseitig Amplituden- und Phasenobjekte

Phase, Brechzahl und optischer
Weg
Abbe'sche Theorie der
Bildentstehung
Relative Phasenlage der
Beugungsordnungen
bei Amplitudenobjekten
bei Phasenobjekten
Phasenmikroskop
mit Phasenplättchen

Lambert-Beersches Gesetz

Optische Dichte

mit Phasenplättchen
Lage und Größe der nullten
Beugungsordnung
räumliche Kohärenz
Beugungsartefakte
nach Zernike
Lage und Größe der nullten
Beugungsordnung
räumliche Inkohärenz
Babinet'sches Prinzip
Beugungsartefakte
Kontrastfunktion
Dämpfung im Phasenring

Kohärenz Sichtbarkeit von Interferenz zeitliche Kohärenz Länge von Wellenpaketen spektrale Zusammesetzung von Wellenpaketen Zeitversatz beim Eintreffen von Amplituden-geteilten Wellenpaketen zeitlicher schneller Wechsel von Interferenzmustern Kohärenzzeit räumliche Kohärenz ortsgeteilte Wellenpakete Phasenverschiebung zwischen ortsgeteilten Wellenpaketen in Abhängigkeit von

der Quellpunktlage

räumliche Überlagerung von

Besondere Voraussetzungen

keine

Begleitmaterial Skript als herunterladbare Datei

Separate Prüfung Nein

Interferenzmustern räumliche Kohärenzlänge

Interferometer

Michelson

Kompensationsplatte

zweites Interferenzbild

Mach-Zehnder

Phasensprünge bei Reflexion

Komplementarität der

Interferenzbilder

Kontrast bei ungleicher Teilung

Eindeutigkeit von

Interferenzmustern

Weißlichtinterferometer

Interferenzfarben und

Kontrastfunktion

Interferenzmikroskop

nach Linnik

abgeglichene Objektive

nach Michelson

Objektive mit großem

Arbeitsabstand

nach Mirau

Schwarzschild Optiken

Differentieller Interferenzkontrast

Doppelbrechung

Modifikation des Huygen'schen

Prinzips

Indikatrix

Wollaston-, Nomarksi- und Smith

Prismen

Aufspaltung unter der

Auflösungsgrenze

Interferenzfarben

Basisgangunterschied und Lambda

Platte

Kohärenzbedingungen im DIC

zeitlich

räumlich

Polarisation

Transmissions-

Interferenzmikroskope

Leitz'sches Mach-Zehnder

Interferenz mikroskop

Interphako Mikroskop

Fertigkeiten Schärfentiefen berechnen

optische Dichten, Dynamik von
Bildern und
Absorptionskoeffizienten
ineinander umrechnen

Phasensprünge an Grenzflächen

Phasensprünge an Grenzflächen bestimmen

Lage und Größen von Phasenringen und Ringblenden in Zernike Phasenmikroskopen berechnen

Stärke von Beugungsordnungen berechnen und daraus Kontraste ermitteln

zeitliche Kohärenz aus spektraler Bandbreite in Wellenlängen und Frequenzen abschätzen

räumliche Kohärenz aus Quellgröße und Entfernung abschätzen

Strahlengänge von den verschiedenen Interferenzmikroskopen zeichnen und erläutern

Bei den verschiedenen Interferenzmikroskopen die Kohärenzanforderungen berechnen

Aus Interferogrammen Geometrien berechnen

Farben bei Weißlichtinterferenz vorhersagen

Konstruktionsprinzipien verschiedener Mikroskope erläutern und miteinander vergleichen

Aufwand Präsenzlehre

Тур	Präsenzzeit (h/Wo.)
Vorlesung	2
Tutorium (freiwillig)	0

Praktikum

Lernziele	ernziele	
Zieltyp	Beschreibung	
Fertigkeiten	Köhlersche Beleuchtung einstellen	
	Längen- und Winkelabgleich in Interferometern durchführen	
	Objekte für die Mikroskopie präparieren	
	Mikroskope aufbauen und justieren und bedienen, insebesondere Hellfeld Dunkelfeld Auflicht Durchlicht Zernike Phasenokntrast Linnik Interferenzkontrast Differentieller Interferenzkontast	
	bei gegebenem Objekt geeignetes Mikroskopisches Verfahren auswählen	
	Optische Artfeakte sicher erkennen und von Bildstrukturen unterscheiden	
	Bildqualität beurteilen	
	Quantitative Analysen mit Mikroskopen durchführen, insbesondere Längen Höhen Oberflächentopografien	
	an einem Bild erkennen, welches mikroskopische Verfahren benutzt wurde	
	Wissenschaftlichen Bericht verfassen Aufgabenbestellung beschreiben Lösungsansatz darstellen Versuchsaufbau erläutern Verarbeitung der Messdaten darlegen Fehlerrechnung durchführen Ergebnis präsentieren und kritisch diskutieren	

Besondere Voraussetzungen

keine

en zu den ı als dbare
gsanleitungen exen Geräten erladbare

Separate Prüfung

PrüfungstypProjektaufgabe imTeam bearbeiten (z.B.im Praktikum)

Aufwand Präsenzlehre		
Тур	Präsenzzeit (h/Wo.)	
Praktikum	2	
Tutorium (freiwillig)	0	

Details

- 1) Übungsaufgabe mit fachlich / methodisch eigeschränktem Fokus lösen
- Vor Antritt des Praktikums sind zu Hause ausgearbeitete Aufgaben vorzulegen.
- 2) Fachgespräch zu besonderenFragestellungenDie Grundideen zum Versuch werden vor dessen Durchführung im Gespräch erfragt.
- 3) Projektaufgabe (im Team) bearbeiten Je nach Studierendenzahl werden die Versuche alleine (bevorzugt) oder zu zweit durchgeführt.
- Versuchsaufbauten müssen selber aufgebaut und justiert werden
- Mit den selber errichteten Versuchsaufbauten müssen Messdaten gewonnen werden
- 4) Anfertigung eines Versuchsprotokolls. Geprüft wird auf
- Vollständigkeit
- Wissenschaftlichkeit und Präzision der Sprache
- Richtigkeit
- Verständnis der
 Zusammenhänge und
 Interpretation der
 Ergebnisse

Mindeststandard	Alle schriftlichen Aufgaben müssen bearbeitet sein.
	Die Grundideen des Experimentes müssen verstanden sein.
	Alle Versuche müssen durchgeführt worden sein
	Die Versuchsausarbeitungen müssen frei von systematischen Fehlern sein.

© 2022 Technische Hochschule Köln