

# Lehrveranstaltungshandbuch EEZ

Elektrische Energieerzeugung

Version: 2 | Letzte Änderung: 29.04.2022 16:25 | Entwurf: 0 | Status: vom verantwortlichen Dozent freigegeben

## - <u>Allgemeine Informationen</u>

| Langname                    | Elektrische<br>Energieerzeugung                    |
|-----------------------------|----------------------------------------------------|
| Anerkennende<br>LModule     | EEZ BaET                                           |
| Verantwortlich              | Prof. Dr. Wolfgang Evers<br>Professor Fakultät IME |
| Gültig ab                   | Sommersemester 202                                 |
| Niveau                      | Bachelor                                           |
| Semester im Jahr            | Sommersemester                                     |
| Dauer                       | Semester                                           |
| Stunden im<br>Selbststudium | 60                                                 |
| ECTS                        | 5                                                  |
| Dozenten                    | Prof. Dr. Wolfgang Evers<br>Professor Fakultät IME |
|                             |                                                    |

#### Literatur

Günter Cerbe and Gernot Wilhelms, Technische Thermodynamik Carl Hanser Verlag, München, 2013, ISBN 978-3-446-43638-1

Klaus Lucas, Thermodynamik Springer Verlag, Berlin, 2008, ISBN 978-3-540-68645-3

Dietrich Oeding, Bernd R. Oswald, Elektrische Kraftwerke und Netze Springer Vieweg Verlag, Berlin, 2016, ISBN 978-3-662-52702-3

Adolf J. Schwab, Elektroenergiesysteme Springer Verlag, Berlin, 2009, ISBN 978-3-540-92226-1

#### Abschlussprüfung

Prüfungstyp

| Details         | Klausur, in Einzelfällen<br>auch mündliche |
|-----------------|--------------------------------------------|
|                 | Prüfung, mit folgenden                     |
|                 | Inhalten:                                  |
|                 | - Single choice-Fragen                     |
|                 | zum Inhalt der                             |
|                 | Vorlesung                                  |
|                 | - Textaufgaben zu                          |
|                 | thermodynamischen                          |
|                 | Kreisprozessen                             |
| Mindeststandard | Erreichen von 50% der                      |
|                 | Punkte in den Fragen                       |
|                 | und Aufgaben                               |

Klausur

#### Die Studierenden beherrschen die mathematischen Grundbegriffe und können insbesondere mit Mengen, Funktionen, Termen und Gleichungen umgehen. Sie können die Eigenschaften und die Graphen der wichtigsten reellen Funktionen bestimmen. Sie können Grenzwerte für Folgen und Funktionen berechnen und Funktionen auf Stetigkeit untersuchen. Sie kennen die Definition der Ableitung und ihre anschauliche Bedeutung, beherrschen die Anwendung der verschiedenen Ableitungsregeln und können Tangenten bestimmen. Sie beherrschen das Riemann-Integral und können Integralwerte abschätzen. Sie verwenden den Hauptsatz der Differential- und Integralrechnung und die wichtigsten Integrationsregeln zur Berechnung von Integralen.

Unterrichtssprache

Voraussetzungen

deutsch

separate Abschlussprüfung Ja

| nziele       | Besondere Vorauss | etzungen                                                                                       |
|--------------|-------------------|------------------------------------------------------------------------------------------------|
| Beschreibung | keine             |                                                                                                |
|              | Begleitmaterial   | - Elektronisches<br>Vorlesungsskript<br>- Detaillierte<br>Übungsaufgabensammlu<br>mit Lösungen |
|              | Separate Prüfung  | Nein                                                                                           |
|              |                   |                                                                                                |
|              |                   |                                                                                                |
|              |                   |                                                                                                |

#### Kenntnisse - Grundlagen und Definitionen aus der klassischen Thermodynamik \* System und Systemgrenze \* Zustandsgrößen \* Zustandsgleichung idealer Gase \* Die kinetische Energie der Moleküle \* Die spezifischen Wärmekapazitäten \* Die innere Energie U \* Die Energieform Arbeit \* Die Energieform Wärme (1. Hauptsatz der Thermodynamik) \* Die Enthalpie H \* Wirkungsgrade von thermischen Energiewandlern - Arbeitsdiagramme \* Das q,T-Diagramm \* Zustandsänderungen der Gase und deren Darstellung im q,T-Diagramm \* Definition der Entropie \* Das T,s-Diagramm \* Das p,v-Diagramm - Thermodynamische Kreisprozesse \* Der Carnot-Prozess \* Der Ericsson Prozess \* Stirling-Prozess \* Vergleich der Prozesse im T,s-Diagramm - Gasturbinen - Der Dampfkraftwerksprozess

\* Das p,v-Diagramm

\* Wasserdampftafeln\* Das h,s-Diagramm für

von Dampfkraftwerken

Wasser/Dampf

- Kernkraftwerke

\* Kernspaltung

\* Reaktortypen\* Wiederaufarbeitung

\* Entsorgung- Wasserkraft\* Bedeutung

\* Wasserturbinen

\* Reaktorregelung
\* Brutreaktoren
\* Brennelemente
\* Selbstregelverhalten
\* Einheiten der Kerntechnik
\* Sicherheitsphilosophie

**Dampfes** 

\* Spezifische Zustandsgrößen des

\* Der Clausius-Rankine-Prozess \* Erhöhung des Wirkungsgrads

\* GuD-Kraftwerke (Gas und Dampf)

\* Arbeitsvermögen der Wasserkraft

\* Grundlagen der Kernenergie

\* Moderation der Neutronen

| Fertigkeiten | Lösen von Aufgabenstellungen zu |
|--------------|---------------------------------|
| reragaetteri | 3                               |
|              | in Wärmekraftwerken verwendeten |
|              | thermodynamischen               |
|              | Kreisprozessen.                 |

| Тур                         | Präsenzzeit (h/Wo.) |
|-----------------------------|---------------------|
| Vorlesung                   | 2                   |
| Übungen (ganzer Kurs)       | 2                   |
| Übungen (geteilter<br>Kurs) | 0                   |
| Tutorium (freiwillig)       | 0                   |

# Praktikum

#### Lernziele

| Zieltyp      | Beschreibung                                                                                                                                                                                                                                                                         |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fertigkeiten | <ul> <li>Prüfungen planen und sicher durchführen</li> <li>* Versuchse aufbauen</li> <li>* Sicherheitsregeln anwenden</li> <li>- Versuche mit realisierten</li> <li>Schaltungen durchführen</li> <li>- Ergebnisse erklären</li> <li>- Komplexe Aufgaben im Team bewältigen</li> </ul> |

### Aufwand Präsenzlehre

| Тур                   | Präsenzzeit (h/Wo.) |
|-----------------------|---------------------|
| Praktikum             | 1                   |
| Tutorium (freiwillig) | 0                   |

#### Besondere Voraussetzungen

keine

| Begleitmaterial  | Elektronische<br>Anleitungen zum<br>Praktikum |
|------------------|-----------------------------------------------|
| Separate Prüfung | Ja                                            |

# Separate Prüfung

| repare to recent |                                                                                                                                                                                                                                       |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Prüfungstyp      | Projektaufgabe im Team<br>bearbeiten (z.B. im<br>Praktikum)                                                                                                                                                                           |
| Details          | Schritftlicher Eingangstest zur Kontrolle der Vorbereitung der Studierenden Bewertung der vorbereitenden Unterlagen Bewertung der Diskussion mit den Studierenden und der Praktikumsdurchführung anhand eines struktierten Protokolls |
| Mindeststandard  | 70 % des schriftlichen Tests richtig 80 % der vorbereiteten Unterlagen 80 % des Versuchsaufbaus richtig 80 % der Diskussion sinnvoll                                                                                                  |