

TH Köln

Lehrveranstaltungshandbuch EBS

Embedded Security

Version: 3 | Letzte Änderung: 17.10.2019 10:46 | Entwurf: 0 | Status: vom verantwortlichen Dozent freigegeben

- <u>Allgemeine Informationen</u>

Langname	Embedded Security
Anerkennende LModule	EBS MaCSN
Verantwortlich	Prof. Dr. Kerstin Lemke- Rust Professor Hochschule Bonn-Rhein- Sieg
Gültig ab	Sommersemester 2021
Niveau	Master
Semester im Jahr	Sommersemester
Dauer	Semester
Stunden im Selbststudium	96
ECTS	5
Dozenten	Prof. Dr. Kerstin Lemke- Rust Professor Hochschule Bonn-Rhein- Sieg
Voraussetzungen	 - Grundlagen der IT-Sicherheit. - Kenntnisse der angewandten Kryptographie und bekannter kryptographischer Algorithmen (insbesondere DES, AES, RSA, DSA).
Unterrichtssprache	deutsch
separate Abschlussprüfung	Ja

Literatur				
	Ross Anderson: Security Engineering, Wiley, 2008.			
	Stefan Mangard, Elisabeth Oswald, Thomas Popp: Power Analysis Attacks, Springer, 2007.			
Marc Joye, Michael Tunstall (Eds.): Fault Analysis i Cryptography, Springer, 2012.				
•	Weitere Literatur wird in der Lehrveranstaltung bekannt gegeben.			

Abschlussprüfung	
Details	mündliche Prüfung
Mindeststandard	Regelmässige Anwesenheit bei Praktikum und Bearbeiten von Übungsaufgaben
Prüfungstyp	Klausur

- Vorlesung / Übungen

Lernziele **Zieltyp Beschreibung** Kenntnisse Diese Lehrveranstaltung behandelt die Grundlagen und fortgeschrittene Themen der Embedded Security, d.h. der in der Implementierung "eingebauten" Sicherheit. Inhalte: - Einführung Implementierungssicherheit, Sicherheitsziele Tamper Resistance, Tamper Response, Tamper Evidence und beispielhafte Realisierungen. - Hardware-Architekturen (Mikrokontroller, FPGAs, ASICs, System-on-Chip) und bekannte Angriffsmöglichkeiten. - Mikroarchitektur-Seitenkanalangriffe - Implementierungssicherheit kryptographischer Verfahren (Fehleranalysen: Methoden und Gegenmaßnahmen. Seitenkanalanalysen: Timing Analysis, Simple/Differential Power Analysis, Templates, Kollisionsangriffe und Gegenmaßnahmen.) - Standards zur IT-Sicherheitszertifizierung von Produkten: FIPS 140, Common Criteria. - Schwachstellenanalyse von IT-Produkten. Analyse von FIPS 140 Security Policies und Common Criteria Protection Profiles. Fertigkeiten Die Studierenden sind befähgt, in aktuellen Forschungsthemen zur Embedded Security mitzuarbeiten. Die Studierenden sind befähigt, fortgeschrittene Sicherheitsmaßnahmen in sicherheitssensitive Produkte zu

implementieren sowie Schwachstellenanalysen

durchzuführen und implementierte Sicherheitsmaßnahmen bezüglich ihrer Effektivität zu bewerten.

Besondere Voraussetzungen

keine

Separate Prüfung	Nein
	Literatursammlung.
	Lernplattform LEA,
	Kursmaterialien in der
	Praktikumsaufgabensammlung
	Übungsaufgabensammlung,
Begleitmaterial	Vorlesungsfolien,

Aufwand Präsenzlehre	
Тур	Präsenzzeit (h/Wo.)
Vorlesung	2
Übungen (ganzer Kurs)	1
Übungen (geteilter Kurs)	0
Tutorium (freiwillig)	0

- Praktikum

Lernziele

ZieltypBeschreibungFertigkeitenDie Studierenden sind befähigt,
fortgeschrittene
Sicherheitsmaßnahmen in
sicherheitssensitive Produkte zu
implementieren sowie
Schwachstellenanalysen
durchzuführen und implementierte
Sicherheitsmaßnahmen bezüglich
ihrer Effektivität zu bewerten.

Besondere Voraussetzungen

keine

Begleitmaterial - Vorlesungsfolien,
Übungsaufgabensammlung,
Praktikumsaufgabensammlung,
Kursmaterialien in der
Lernplattform LEA,
Literatursammlung.

Separate Prüfung Nein

Aufwand Präsenzlehre

Тур	Präsenzzeit (h/Wo.)
Praktikum	0
Tutorium (freiwillig)	0

© 2022 Technische Hochschule Köln