TH Köln

Modulhandbuch SOP

Systems on Programmable Chips

Bachelor Technische Informatik 2020

Version: 1 | Letzte Änderung: 02.08.2019 10:13 | Entwurf: 0 | Status: vom Modulverantwortlichen freigegeben | Verantwortlich: Krawutschke

- <u>Allgemeine Informationen</u>

Anerkannte Lehrveranstaltungen	SOP Krawutschke
Gültig ab	Sommersemester 2022
Modul ist Bestandteil der Studienschwerpunkte	ES - Eingebettete Systeme IOT - Internet of Things
Dauer	1 Semester
ECTS	5
Zeugnistext (de)	Digitaltechnische Systeme mit programmierbaren Bausteinen
Zeugnistext (en)	Digital Systems with SoPC technology
Unterrichtssprache	deutsch oder englisch
abschließende Modulprüfung	Ja

Modulprüfung	
Benotet	Ja
Konzept	An Hand einer Aufgabenstellung, die der Studierende analysiert und eine Lösung skizziert, weißt die/der Studierende nach, dass er in der Lage ist, zu erkennen, wie er die SoPC-Technologie auf diese Aufgabe anwenden kann. Sie/er ist in der Lage, Teile der Lösung mit Konzepten aus der Digitaltechnik (Automaten) und Programmiertechnik (Multitasking-Programmierung) zu entwerfen.
Frequenz	Jedes Semester

- Allgemeine Informationen

Inhaltliche Voraussetzungen

DR -Digitalrechner

Grundlagen Automaten Grundlagen Mikroprozessor Grundlagen Hardwarenahe Programmierung in C

Grundlagen Digitale Logik

PP -

Programmier-Kompetenzen

Programmierpraktikupetenz zur Textanalyse und

Extraktion der Informationen für einen Programmentwurf Strukturierte Analyse

BVS1 -

Konzepte des Multitasking

Betriebssysteme und Verteilte Systeme 1

Handlungsfelder

Systeme zur Verarbeitung, Übertragung und Speicherung von Informationen für technische Anwendungen planen, realisieren und integrieren

Anforderungen, Konzepte und Systeme analysieren und bewerten

Mit Auftraggebern, Anwendern, gesellschaftlichem Umfeld und Teammitgliedern interagieren

Learning Outcomes

ID Learning Outcome

LO_DTS

Die Studierenden erwerben die Kompetenz zum Entwurf, Implementierung und Test eines modernen signalverarbeitenden Systems, indem sie an einfachen Beispielen die FPGA-Technologie mittels Hardware-Beschreibungssprache benutzen lernen, dies dann auf eine komplexere Aufgabenstellung aus der Audio-Signalverarbeitung anwenden, damit sie später FPGAs als "Problemlöser" für leistungsfähige Verarbeitung von Signalen einsetzen können.

LO_PDTS

Die Studierenden erwerben die Kompetenz zum Entwurf eines Hardware-Software-Systems, indem sie auf der Basis ihrer Kenntnisse in hardwarenaher Programmierung und der Erstellung programmierter digitaler Systeme ein Beispielsystem auf einem SoPC (System on Programmable Chip) erstellen, damit sie später diese Technologie für verschiedenste Aufgaben, bei denen viele Daten in kürzester Zeit bearbeitet werden müssen, anwenden können.

Kompetenzen

Kompetenz	Ausprägung
In Systemen denken	Voraussetzungen für diese Kompetenz (Wissen,) werden vermittelt
Konzepte und Methoden der Informatik, Mathematik und Technik kennen und anwenden	diese Kompetenz wird vermittelt

Systeme analysieren	Voraussetzungen für diese Kompetenz (Wissen,) werden vermittelt
Systeme entwerfen	diese Kompetenz wird vermittelt
Systeme realisieren	diese Kompetenz wird vermittelt
Systeme prüfen	diese Kompetenz wird vermittelt
Typische Werkzeuge, Standards und Best Practices der industriellen Praxis kennen und einsetzen	diese Kompetenz wird vermittelt
In vorhandene Systeme einarbeiten und vorhandene Komponenten sinnvoll nutzen	diese Kompetenz wird vermittelt
Komplexe technische Aufgaben im Team bearbeiten	Voraussetzungen für diese Kompetenz (Wissen,) werden vermittelt

– <u>Vorlesung / Übungen</u>

Тур	Vorlesung / Übungen
Separate Prüfung	Nein
Exemplarische inhaltliche	Digitaltechnische Systeme beschreiben (modellieren) mittels
Operationalisierung	* Boole'scher Algebra
	* Endliche Automaten/Schaltwerke
	* Erweiterte endliche Automaten
	* Kontrollfluss-Datenflusssysteme
	Digitaltechnische Systeme realisieren mit
	* Schaltplan aus digitalen Bausteinen
	* VHDL
	* VHDL für Schaltwerke und CFDF-Systeme
	Digitale Technologie
	* Elementares Schaltermodell für digitale MOS-Schaltunge
	* CMOS Basis-Schaltkreise für logische Funktionen
	* Laufzeiteffekte in Schaltnetzen verstehen, beschreiben und klassifizieren
	* Aufbau und Funktionsweise programmierbarer Bausteine (CPLD, FPGA)
	verstehen und beschreiben
	SoC/SoPC-Systeme
	* Systemaufbau verstehen
	* Maschinennahe Programmierung eines SoC/SoPC mit Interrupts und
	Alarme
	* Programmierte Automatensteuerung
	* Regeln für Hardware/Softwareaufteilung
	Erarbeitung von Problemlösungen, die sich mit digitaltechnischen Systemen
	(Schaltnetzen, Zählern, Automaten) implementieren lassen
	* Analyse der Aufgabenstellung
	* Design der Lösung erstellen
	* Ableitung der VHDL-Beschreibung
	* Verifikation mit Simulation
	* Implementation und Validierung auf FPGA
	SoC/SoPC-System erstellen
	* Programmierung des Systems mit hardwarenahem Steuerprogramm
	* Techniken zur Bearbeitung paralleler Vorgänge
	* Nutzung von Alarmen und Interrupts
	* Einfache Verfahren des Multitasking
	* Block- versus Einzelverarbeitung
	* SW-Entwicklungsumgebung für SoC/SoPC-Systeme zur Programmierung
	benutzen
	HW-SW-System erstellen
	* Aufgabenaufteilung (Partitionierung) HW/SW
	* Kopplung Hardware-Software
	Systemverhalten aus spezifizierenden Texten herleiten

Praktikum

Тур	Praktikum
Separate Prüfung	Ja

Separate Prüfung		
Benotet	Nein	
Frequenz	Einmal im Jahr	

Exemplarische Software-Systems in mehreren
inhaltliche Schritten
Operationalisierung digitaltechnisches System
2) Software-Teil als
programmiertes System
3) Kopplung beider Teile über

Registerschnittstelle mit Protokoll

Voraussetzung Ja für Teilnahme an Modulprüfung

Konzept

exemplarische Aufgabenstellung für SoPC-Technologie.
Sie er erarbeitet zunächst einen Lösungsentwurf, der auf Vollständigkeit und logische Stimmigkeit geprüft wird. An einem Labortermin implementiert und validiert dann ein Miniteam einen der eingereichten Lösungsentwürfe auf einem FPGA und zeigt damit, dass es in der Lage ist, diese Technologie für die Erstellung von dafür geeigneten IT-Systemen einzusetzen.

Die/der Studierende erhält eine

© 2022 Technische Hochschule Köln