TH Köln

Lehrveranstaltungshandbuch EMM

Energiemanagement in Energieverbundsystemen

Version: 1 | Letzte Änderung: 07.04.2021 11:03 | Entwurf: 0 | Status: vom verantwortlichen Dozent freigegeben

- <u>Allgemeine Informationen</u>

Langname	Energiemanagement in Energieverbundsystemen
Anerkennende LModule	EMM MaET
Verantwortlich	Prof. Dr. Ingo Stadler Professor Fakultät IME
Gültig ab	Sommersemester 202
Niveau	Master
Semester im Jahr	Wintersemester
Dauer	Semester
Stunden im Selbststudium	150
ECTS	5
Dozenten	
Voraussetzungen	keine
Unterrichtssprache	deutsch
separate Abschlussprüfung	Ja

Literatur

Abschlussprüfung	
Details	Mündliche Prüfung (50%), Vortrag (25%), Paper (25%)
Mindeststandard	Die Studierenden verstehen, was zur Gewährleistung einer stabilen elektrischen Energieversorgung notwendig ist und können entsprechende Methoden anweden.
Prüfungstyp	mündliche Prüfung, strukturierte Befragung

ele	Besondere Vorauss	setzungen
Beschreibung	keine	
	Begleitmaterial	undefined
	Separate Prüfung	Nein

 $| \ |$

Fertigkeiten

Die Studierenden analysieren die Mechanismen und Voraussetzungen zur Garantie der Stabilität von elektrischen Verbundsystemen, indem sie die Frequenz- und Spannungsstabilität beeinflussenden Kriterien kennen, um später neue Maßnahmen in einem geänderten, auf erneuerbaren Energien basierenden Energiesystem zur Gewährleistung der Stabilität entwickeln zu können. Die Studierenden analysieren die Regelmechanismen heutiger Verbundsysteme, indem Sie die Begrifflichkeiten, die Wirkungsweise und die Organisation verschiedener Stufen der Regelleistung und Regelenergie verstehen, um zukünftige Maßnahmen und Alternativen zu deren Bereitstellung einschätzen und selbst entwickeln können. Die Studierenden kennen Möglichkeiten zur Sektorenkopplung und können deren Einsatz zum Demand Response bewertem, indem Sie Differentialgleichungen zur Lösung von Bilanzproblemen erstellen und lösen können, numerischer Verfahren zur Lösung nicht stationärer Veränderungen in Speichersystemen erstellen und anwenden können, um damit Lösungen in verschiedenen Zeitund Leistungsbereichen des Demand Response zu beurteilen. Die Studierenden kennen und sind in der Lage, Technologien der Energiespeicherung in verschiedensten Zeit-, Energie- und Leistungsbereichen zu beurteilen, indem sie die relevanten Charakteristiken und Ökonomien kennen, um deren Einsatz für unterschiedliche Anwendungen beurteilen zu können. Die Studierenden sind in der Lage, die verschiedensten Möglichkeiten zur Herstellung der Blindleistungsbilanz in Verbundsystemen benennen und zu anlysieren, indem sie die Leitungsgleichungen zur Netzanalyse anwenden, um mit verschiedenen Maßnahmen die Spannungsqualität gewährleisten

zu können.

Aufwand Präsenzlehre		
Тур	Präsenzzeit (h/Wo.)	
Vorlesung	0	
Tutorium (freiwillig)	0	

– <u>Projekt</u>

Lernziele

ZieltypBeschreibung

Fertigkeiten

Es werden wechselnde aktuelle

Projekte bearbeitet.

Aufwand Präsenzlehre

Тур	Präsenzzeit (h/Wo.)
Projekt	0
Tutorium (freiwillig)	0

Besondere Voraussetzungen

keine

Begleitmaterial undefined

Separate Prüfung Nein

© 2022 Technische Hochschule Köln