Cryptography
PDF Course Catalog Deutsche Version: KRY
Version: 3 | Last Change: 05.04.2022 18:00 | Draft: 0 | Status: vom verantwortlichen Dozent freigegeben
| Long name | Cryptography |
|---|---|
| Approving CModule | KRY_MaCSN, KRY_MaTIN |
| Responsible |
Prof. Dr. Heiko Knospe
Professor Fakultät IME |
| Valid from | summer semester 2021 |
| Level | Master |
| Semester in the year | summer semester |
| Duration | Semester |
| Hours in self-study | 78 |
| ECTS | 5 |
| Professors |
Prof. Dr. Heiko Knospe
Professor Fakultät IME |
| Requirements | Mathematics (Bachelor level) and programming skills. |
| Language | English |
| Separate final exam | Yes |
| M. Bellare, P. Rogaway, Introduction to Modern Cryptography, UCSD CSE |
| H. Delfs, H. Knebl, Introduction to Cryptography, Springer |
| S. Goldwasser, M. Bellare, Lecture Notes on Cryptography, MIT |
| J. Hoffstein, J. Pipher, J.H. Silverman, An Introduction to Mathematical Cryptography, Springer |
| J. Katz, Y. Lindell, Introduction to Modern Cryptography, CRC Press |
| H. Knospe, A Course in Cryptography, American Mathematical Society |
| C. Paar, J. Pelz, Understanding Cryptography. Springer |
| N.P. Smart, Cryptography Made Simple, Springer |
| K. H. Rosen, Discrete Mathematics and its Applications, McGraw-Hill |
| V. Shoup, A Computational Introduction to Number Theory and Algebra, Cambridge University Press |
| Details | Written Exam |
|---|---|
| Minimum standard | Passing the exam |
| Exam Type | EN Klausur |
| Goal type | Description |
|---|---|
| Knowledge | * Mathematical Fundamentals * Encryption Schemes and Definitions of Security * Elementary Number Theory * Algebraic Structures * Block Ciphers * Stream Ciphers * Hash Functions * Message Authentication Codes * Public-Key Encryption and the RSA Cryptosystem * Key Establishment * Digital Signatures * Elliptic Curve Cryptography * Outlook: Post-quantum cryptography |
| Type | Attendance (h/Wk.) |
|---|---|
| Lecture | 2 |
| Exercises (whole course) | 1 |
| Exercises (shared course) | 0 |
| Tutorial (voluntary) | 0 |
| - |
| Accompanying material | undefined |
|---|---|
| Separate exam | No |
| Goal type | Description |
|---|---|
| Skills | - Solve mathematical and cryptographical problems in Python / SageMath: working with large integers and residue classes, factorization, primality and prime density, RSA key generation and encryption / decryption, Diffie-Hellman key exchange. - Write code to encrypt and decrypt files using the AES block cipher and different operation modes. Analyze the statistical properies of AES ciphertext. - Write code for RSA key generation, key encapsulation / decapsulation and hybrid encryption / decryption. |
| Type | Attendance (h/Wk.) |
|---|---|
| Practical training | 1 |
| Tutorial (voluntary) | 0 |
| - |
| Accompanying material | undefined |
|---|---|
| Separate exam | Yes |
| Exam Type | EN praxisnahes Szenario bearbeiten (z.B. im Praktikum) |
|---|---|
| Details | Individual feedback and passing grade |
| Minimum standard | Successful completion of all lab tasks. |
© 2022 Technische Hochschule Köln