Höhere Ingenieurmathematik
PDF Lehrveranstaltungsverzeichnis English Version: HIM
Version: 3 | Letzte Änderung: 28.09.2019 11:58 | Entwurf: 0 | Status: vom verantwortlichen Dozent freigegeben
| Langname | Höhere Ingenieurmathematik |
|---|---|
| Anerkennende LModule | HIM_MaCSN, HIM_MaET, HIM_MaTIN |
| Verantwortlich |
Prof. Dr. Heiko Knospe
Professor Fakultät IME |
| Gültig ab | Sommersemester 2021 |
| Niveau | Master |
| Semester im Jahr | Sommersemester |
| Dauer | Semester |
| Stunden im Selbststudium | 78 |
| ECTS | 5 |
| Dozenten |
Prof. Dr. Heiko Knospe
Professor Fakultät IMEProf. Dr. Hubert Randerath Professor Fakultät IMEProf. Dr. Beate Rhein Professor Fakultät IME |
| Voraussetzungen | Differential- und Integralrechnung für mehrere Variablen sowie Lineare Algebra (Mathematik auf Bachelor-Niveau) |
| Unterrichtssprache | deutsch und englisch |
| separate Abschlussprüfung | Ja |
| K. Burg, H. Haf, F. Wille, A. Meister, Vektoranalysis - Höhere Mathematik für Ingenieure, Naturwissenschaftler und Mathematiker, Springer Vieweg |
| E. Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons |
| L. Papula, Mathematik für Ingenieure und Naturwissenschaftler Band 3, Springer Vieweg |
| R. E. Walpole, R. H. Myers, S. L. Myers, K. Ye, Probability & Statistics for Engineers & Scientists, Prentice Hall |
| S. M. Ross, Probability and Statistics for Engineers and Scientists, Elsevier |
| S. M. Ross, Stochastic Processes, John Wiley & Sons |
| U. Krengel, Einführung in die Wahrscheinlichkeitstheorie und Statistik |
| A. Koop, H. Moock, Lineare Optimierung, Springer |
| R. Reinhardt, A. Hoffmann, T. Gerlach, Nichtlineare Optimierung, Springer |
| M. Ulbrich, S. Ulbrich, Nichtlineare Optimierung, Birkhäuser |
| Details | Schriftliche Abschlussprüfung |
|---|---|
| Mindeststandard | Bestehen der Klausur |
| Prüfungstyp | Klausur |
| Zieltyp | Beschreibung |
|---|---|
| Kenntnisse | Eine Kombination von Themen aus folgenden Bereichen: - Vektoranalysis - Wahrscheinlichkeitstheorie, Statistik und Multivariate Statistik - Stochastische Prozesse - Optimierung Vector Analysis - Vector Spaces - Scalar and Vector Functions - Differential Operators - Line Integrals - Double Integrals - Triple Integrals - Change of Variables - Surface Integrals - Divergence Theorem - Theorem of Stokes - Maxwell Equations Probability and Statistics - Descriptive Statistics - Two-dimensional Data - Simple Linear Regression - Probability Spaces - Random Variables - Expectation, Variance, Moments - Jointly Distributed Random Variables - Independent Random Variables - Covariance - Binomial Random Variable - Poisson Random Variable - Uniform Random Variable - Normal Random Variable - Chi-Square Distribution - t-Distribution - Central Limit Theorem - Distributions of Sampling Statistics - Confidence Intervals - Hypothesis Testing - t-Test, f-Test, Chi-Square Test - Overview of various Tests Multivariate Statistics - Analysis of multidimensional data - Multivariate Random Variables - Matrix decompositions, Singular Value Decomposition (SVD) - Factor analysis, Principal Component Analysis (PCA) - Multiple Linear Regression Stochastic Processes - Discrete and continuous time processes - Random walk - Markov chain - Poisson process - Queuing theory Optimization - Linear Programming - Unconstrained Optimization: Gradient method, Newton's method, Trust Region method - Constrained Optimization: Karush–Kuhn–Tucker (KKT) conditions, Lagrange multipliers, Penalty and Barrier functions - Special optimization problems: Mixed Integer Nonlinear Programming, Nonlinear Stochastic Optimization |
| Fertigkeiten | - Anwendung von Verfahren der Vektoranalysis zur Lösung von Problemen der Natur- und Ingenieurwissenschaften. - Anwendung von Verfahren der deskriptiven und induktiven Statistik auf ein- und mehrdimensionale Daten. - Planung und Durchführung von statistischen Tests. - Fähigkeit aus Daten relevante Informationen zu gewinnen. - Anwendung von Optimierungsstrategien zur Lösung von Problemen. |
| Typ | Präsenzzeit (h/Wo.) |
|---|---|
| Vorlesung | 3 |
| Übungen (ganzer Kurs) | 1 |
| Übungen (geteilter Kurs) | 0 |
| Tutorium (freiwillig) | 0 |
| keine |
| Begleitmaterial | - |
|---|---|
| Separate Prüfung | Nein |
© 2022 Technische Hochschule Köln