

TH Köln

Modulhandbuch NSA

Netzsicherheit und Automation

Bachelor Technische Informatik 2020

Version: 6 | Letzte Änderung: 09.12.2022 13:12 | Entwurf: 0 | Status: vom Modulverantwortlichen freigegeben | Verantwortlich: Grebe

- <u>Allgemeine Informationen</u>

Anerkannte Lehrveranstaltungen	<u>NSA Grebe</u>
Gültig ab	Wintersemester 2022/23
Fachsemester	4
Modul ist Bestandteil des Studienschwerpunkts	NVS - Netze und Verteilte Systeme
Dauer	1 Semester
ECTS	5
Zeugnistext (de)	Netzsicherheit und Automation
Zeugnistext (en)	Network Security and Automation
Unterrichtssprache	deutsch oder englisch
abschließende Modulprüfung	Ja

Modulprüfung

Benotet Ja

Konzept

Die Studierenden weisen in einer abschließenden Prüfung (schriftlich, optional mündlich) summarisch ihre Kompetenzen nach. Die Prüfung umfasst exemplarisch Teilgebiete der Veranstaltung, die in geleiteten Fragen und Teilaufgaben bearbeitet werden. Prüfungsbestandteile umfassen folgende Teilbereiche 1.) Sichere Beherrschung grundlegender Begrifflichkeiten, Konzepte und Techniken. Typische Aufgabenformen sind Multiple-Choice-Fragen, offene Fragen, Bewertung von Aussagen hinsichtlich ihrer Korrektheit (K.1, K.2, K.3, K.4, K.10) 2.) Anwendung von Planungsund Bewertungstechniken Typische Aufgabenformen sind Planungsaufgaben von Netzen oder Teilsystemen (K.4, K,5, K.7). 3.) Prüfung von Lösungsvorschlägen auf Korrektheit, Identifikation von Fehlern in Aussagen oder vorgegebenen Netzen. Typische Aufgabenformen enthalten die Analyse vorgegebener Netzarchitekturen und Sysetmaussagen. (K.4, K.7, K.8, K.10).

Die Kompetenzen (K.6, K.9, K.10, K15, K16) werden während des Praktikums vermittelt und vor der Erteilung des Testats geprüft. Sie lassen sich in einer zeitbegrenzten Prüfung schwer nachweisen.

Frequenz

Jedes Semester

- Allgemeine Informationen

Inhaltliche Voraussetzungen

NP

Fundamentale Kenntnisse über

-Netze und Protokolle IP-basierte Netze und Kompetenzen zu Planug, Implementierung und Betrieb

von IP-Netzen werden vorausgesetzt. Im Praktikum werden Kenntnisse zu

Protokollanalyse (Wireshark) und Konfiguration / Programmierung von Router und Switch (Cisco IOS-Befehlssätze) erwartet.
Die Voraussetzungnen können u.a. durch das Testat für die ULP NP oder die nachgewiesenen CCNA Module ITN und RSE nachgewiesen werden.

Handlungsfelder

Systeme zur Verarbeitung, Übertragung und Speicherung von Informationen für technische Anwendungen planen, realisieren und integrieren

Anforderungen, Konzepte und Systeme analysieren und bewerten

Informationstechnische Systeme und Prozesse organisieren und betreiben

Mit Auftraggebern, Anwendern, gesellschaftlichem Umfeld und Teammitgliedern interagieren

Learning Outcomes

ID

Learning Outcome

LO-IN

Das Modul vertieft Wissen und Kompetenzen zu IP-Netzen und Kommunikationsprotokollen. Das Modul vermittelt Kompetenzen zur Planung, Implementierung, Evalueirung und zum Betrieb von größeren, standortübergreifenden Computernetzen inklusive der dazugehörenden Netzsicherheitstechniken und verteilter Netzmanagementtechniken. Zu den Kenntnissen und Kompetenzen gehören: Grundlegende Konzepte und Technologien von skalierenden Rechnernetzen benennen, strukturieren, einordnen (K.2, K.4, K.8), Skalierende Netze unter Einsatz geeigneter Tools analysieren und grafisch darstellen (K.4, K.7, K.8, K.9), planen und einrichten (K.4, K.5, K,6, K.7, K.10), Leistungsfähigkeit von Rechnernetzen abschätzen und analysieren (K.2, K.3, K.7, K.8), Sicherheitsrisiken und Abwehrtechniken erläutern, implementieren und bewerten (K.1, K.2, K.3, K.7, K.8), Netzmangementaufgaben und techniken erläutern, implementieren und bewerten (K.1, K.2, K.3, K.7, K.8), Information aus englischen Originalquellen und Standards ableiten (K.2, K.8, K.3, K.4,K.15). Womit: Kenntnisse und Basisfertigkeiten

werden in Vorlesung und Übung vermittelt. Darauf aufbauend werden im Praktikum Kompetenzen und Fertigkeiten ausgebaut und inhaltliche Themen vertieft. Im Praktikum arbeiten die Studierenden in Kleingruppen und verteidigen ihre Lösungen (K.8, K.16). Wozu:

Computernetze sind heute die Grundlage für alle technischen Kommunikationssysteme, von der Telekommunikation über Unternehmensnetze bis hin zu Automatisierung und grundlegender Digitalisierung. Das auf dem Modul NP augfbauende Modul IN fokusiert auf Kompetenzen zur Planung, Implementierung (HF1), Betrieb (HF3) und Evaluierung (HF2) von

größeren,
standortübergreifenden
Unternehmensnetzen.
Insbesondere durch die
Verbindung zum Internet und die
standortübergreifenden Aspekte
werden Netzsicherheit und
Netzmangement als weitere
zusätzliche Schwerpuntk
aufgenommen. Die Verteidgung
der eigenen Lösungen in der
Übung und im Praktikum fördert
die Interaktionsfähigkeit der
Studierenden (HF 4).

Kompetenzen

Kompetenz	Ausprägung
In Systemen denken	diese Kompetenz wird vermittelt
fachliche Probleme abstrahieren und formalisieren	diese Kompetenz wird vermittelt
Konzepte und Methoden der Informatik, Mathematik und Technik kennen und anwenden	diese Kompetenz wird vermittelt
Systeme analysieren	diese Kompetenz wird vermittelt
Systeme entwerfen	diese Kompetenz wird vermittelt
Systeme realisieren	diese Kompetenz wird vermittelt
Systeme prüfen	diese Kompetenz wird vermittelt
Informationen beschaffen und auswerten; Technische Zusammenhänge darstellen und erläutern	diese Kompetenz wird vermittelt
Typische Werkzeuge, Standards und Best Practices der industriellen Praxis kennen und einsetzen	diese Kompetenz wird vermittelt

In vorhandene Systeme einarbeiten und vorhandene Komponenten sinnvoll nutzen	diese Kompetenz wird vermittelt
Befähigung zum lebenslangen Lernen	Voraussetzungen für diese Kompetenz (Wissen,) werden vermittelt
Kommunikative und interkulturelle Fähigkeiten anwenden	diese Kompetenz wird vermittelt

- <u>Vorlesung / Übungen</u>

Тур	Vorlesung / Übungen
Separate Prüfung	Nein
Exemplarische inhaltliche Operationalisierung	Anforderungen und Netztechniken an größere Unternehmensnetze wie Techniken zur Bildung von Redundanz, virtuellen LAN (VLAN), Multi-area Routing und Skalierung sowie hierarchische Architekturen werden eingeführt. Lösungen zur alternative Netzanschlüsse wie WLAN und xDSL sowie standortüberfeifenden Kommunikation (WAN) werden darauf aufbauend erörtert. Angriffe auf IP-Netze und Abwehrmassnahmen der Netzsicherheit
	werden ergänzend erarbeitet. Schließlich werden Netzmanagementaufgaben und -Protokolle eingeführt. Die Studierenden werden in die Lage versetzt, systematisch größerer, auch standortübergreifende Unternemensnetze inklusive Netzsicherheitsfunktionen und Netzmanagementfunktionen eigenständig zu planen, implementieren, evaluieren und zu betreiben.

Praktikum

Тур	Praktikum
Separate Prüfung	Ja
Exempla- rische inhaltliche Operatio- nalisierung	Das Prakikum umfasst die Planung, Implementierung und Konfiguration diverser Netzumgebungen mit Analyse der Funktionsfähigkeit und Protokollanalyse der beteiligten Kommunikationbsprotokolle und Sicherungsfuntkionen. Unter Verwendung der einschlägigen Konfigurations- und Programmierschnittstellen wird in die Programmierung und Konfiguration von Netzkomponenten eingeführt. Die Studierenden werden in die Lage versetzt, selbständig Computernetze zu entwerfen, zu realisierung und zu analysieren.

Separate Prutung		
Benotet	Nein	
Frequenz	Einmal im Jahr	
Voraussetzung für Teilnahme an Modulprüfung	Ja	

Konzept

Selbstlernaufgaben zur Vorbereitung des Praktikums.

Praxisnahe Szenarien in Kleingruppen (typsich 2 Studierende) analysieren, planen, implementieren und testen. Die Kompetenzen (K.1, K.4, K.5, K.6, K.9, K.10, K15, K16) werden während des Praktikums vermittelt und vor der Erteilung des Testats durch Demonstration am Testszenario und mündlich geprüft. Das Bestehend der unbenoteten Leistungsprüfung (ULP) ist Voraussetzung für die Teilnahme an der abschließenden Modul-Prüfung. Optional ist die Teilnahme an Cisco Academy CCNA (Cisco Certified Network Associate) Moduln möglich. Der erfolgreiche Abschluss von ausgewählten Labs von CCNA 2 und CCNA 3 wird für das Praktikum anerkannt.

© 2022 Technische Hochschule Köln