

Lehrveranstaltungshandbuch LSPW

Leistungselektronische Stellglieder für PV- und Windkraftanlagen

Version: 3 | Letzte Änderung: 24.10.2019 12:57 | Entwurf: 0 | Status: vom verantwortlichen Dozent freigegeben

- <u>Allgemeine Informationen</u>

Langname	Leistungselektronische Stellglieder für PV- und Windkraftanlagen
Anerkennende LModule	LSPW MaET
Verantwortlich	Prof. Dr. Andreas Lohner Professor Fakultät IME
Gültig ab	Wintersemester 2020/21
Niveau	Master
Semester im Jahr	Wintersemester
Dauer	Semester
Stunden im Selbststudium	78
ECTS	5
Dozenten	Prof. Dr. Christian Dick Professor Fakultät IME
Voraussetzungen	Grundlagen der Elektrotechnik Leistungselektronik Grundlagen elektrischer Antriebe Analoge Signale und Systeme
Unterrichtssprache	deutsch
separate Abschlussprüfung	Ja

Literatur

Hau E.: Windkraftanlagen - Grundlagen, Technik, Einsatz, Wirtschaftlichkeit, Springer Verlag

Mertens, K.: Photovoltaik - Lehrbuch zu Grundlagen, Technologie und Praxis, Hanser Verlag

Sahan, B.: Wechselrichtersysteme mit Stromzwischenkreis zur Netzanbindung von Photovoltaik-Generatoren, KDEE Kassel

Abschlussprüfung

Details

Mittels mündlicher
Prüfung werden die
erlernten Inhalte und
Kompetenzen abgefragt

Mindeststandard

Rein inhaltliches Wissen
definiert die
Bestehensgrenze

Prüfungstyp

mündliche Prüfung,
strukturierte Befragung

Vorlesung / Übungen

Lernziele		
Zieltyp	Beschreibung	
Kenntnisse	Überblick über die verschiedenen erneuerbaren Energieträger und deren Potentiale Photovoltaik; Windkraft etc.	
Kenntnisse	Prinzipien von netzgeführten wie von Inselwechselrichtern für Photovoltaikanlagen Physik der Solarzelle Stromrichtertopologien Systemarchitekturen: Zentral-, String- und Modulwechselrichter Steuerungsverfahren: PWM, MPP- Tracking etc.	
Kenntnisse	Prinzipien von Windkraftanlagen doppeltgespeiste Asynchronmaschine Anlage mit Synchronmaschine windkraftspezifische Regelungsverfahren	
Fertigkeiten	Die Studierenden können elektronische und elektromagnetische Strukturen, Topologien und Regelungsverfahren verschiedene erneuerbarer Energieerzeugungsanlagen (Photovoltaik, Wind etc.), mit dem Fokus auf deren Stellglieder, erläutern. Die Studierenden besitzen Sie die Fähigkeit, die gesamte anlagenspezifische Systemtechnik in Wesentliche Teilabschnitte zu zergliedern, einzelne Aspekte zu entwickeln oder zu projektieren und damit einzelne Schritte einer Synthese durchzuführen. Der Realitätsbezug, insbesondere im Hinblick auf neue regulatorische, normative Rahmenbedingungen, welche mit der Energiewende einhergehen, wird hergestellt. Damit ist der Studierende in der Lage, die Stellglieder auch im übergeordneten Kontext als Teil eines intelligenten Netzes zu beschreiben, um später die richtigen Stellglieder auszuwählen bzw. zu entwickeln.	

Besondere Voraussetzungen

keine

Begleitmaterial	Vorlesungsfolien als pdf-Dokument Übungsaufgaben Simulationsmodelle Literatur zum Thema
Separate Prüfung	Nein

Die Studierenden lernen Methoder
zur dynamischen Beschreibung
und Regelung erneuerbarer
Energieerzeugungsanlagen kennen
und erhalten dadurch
Entscheidungskompetenz.
Die Studierenden besitzen
Erfahrungen im Umgang mit
Leistungselektronik, Antrieben,
klassischen Messgeräten und sind
in der Lage, Stellglieder mit einem
Simulationstool zu modellieren.
Die Studierenden besitzen die
Fähigkeit elektrische Stellglieder
für erneuerbare
Energieerzeugungsanlagen zu
verstehen, zu dimensionieren und
zu regeln.

Typ Präsenzzeit (h/Wo.)

Aufwand Präsenzlehre

Fertigkeiten

Vorlesung	2
Übungen (ganzer Kurs)	0
Übungen (geteilter Kurs)	1
Tutorium (freiwillig)	0

Praktikum

Zieltyp	Beschreibung
Kenntnisse	In einem ersten Versuch wird ein Wechselrichter für eine Photovoltaikanlage beispielhaft modelliert und mit einem Simulationstool simuliert. Hierbei wird ein besonderes Augenmerk auf die anlagenspezifischen Regelungsverfahren (MPP-Tracking etc.) gerichtet. Danach wird ein kommerzieller Wechselrichter vermessen und analysiert.
Kenntnisse	In einem zweiten Versuch wird eine doppeltgespeiste Asynchonmaschine samt Konvertern als Stellglied für Windkraftanlagen untersucht.
Fertigkeiten	Die Studierenden können mit einem üblichen kommerziellen Werkzeug zur Modellierung und Simulation umgehen. Die Studierenden verstehen das Arbeitsverhalten leistungselektronischer Stellglieder Die Studierenden können Aufgaben in einem kleinen Team lösen. Sie können Messergebnisse analysieren und daraus Erkenntnisse über das Messobjekt gewinnen. Sie können ein reales System modellieren und simulieren.

Besondere Voraussetzungen

keine

Begleitmaterial	Praktikumsanleitung	
Separate Prüfung	Nein	

Aufwand Präsenzlehre

Тур	Präsenzzeit (h/Wo.)
Praktikum	1
Tutorium (freiwillig)	0