

TH Köln

Lehrveranstaltungshandbuch PHO2

Phototechnik 2

Version: 4 | Letzte Änderung: 08.10.2019 22:22 | Entwurf: 0 | Status: vom verantwortlichen Dozent freigegeben

- <u>Allgemeine Informationen</u>

Langname	Phototechnik 2
Anerkennende LModule	PHO2 BaMT
Verantwortlich	Prof. Dr. Gregor Fischer Professor Fakultät IME
Gültig ab	Sommersemester 2021
Niveau	Bachelor
Semester im Jahr	Sommersemester
Dauer	Semester
Stunden im Selbststudium	60
ECTS	5
Dozenten	Prof. Dr. Gregor Fischer Professor Fakultät IME
Voraussetzungen	keine
Unterrichtssprache	deutsch
separate Abschlussprüfung	Ja

Literatur
Allgemein
Pedrotti/Bausch/Schmitt, Optik für Ingenieure, Springer
Naumann/Schröder, Bauelemente der Optik, Hanser
G. Schröder, Technische Optik, Vogel
G. Schröder, Technische Fotografie, Vogel
H.A.E. Keitz, Lichtberechnungen und Lichtmessungen, Philips TB
E. Helbig, Grundlagen der Lichtmesstechnik, Akademische Verlagsgesselschaft Geest & Portig, 1972

Abschlussprüfung	
Details	Klausur mit Rechen- und Verständnisaufgaben
Mindeststandard	50% der Maximalpunktzahl
Prüfungstyp	Klausur

- <u>Vorlesung / Übungen</u>

Lernziele	
Zieltyp	Beschreibung
Kenntnisse	Photometrie Radiometrische, spektrale und photometrische Strahlungsgrößen Photometrische Gesetze Sekundärstrahler Lambert'scher Strahler Spiegelnde Oberfläche Photometrische Berechnungen
Kenntnisse	Strahlungsquellen Emissionsmechanismen Spektrale Verteilung Richtcharakteristik Temperaturstrahlungsgesetze Farbtemperatur und -konversion Technische Lichtquellen Betriebsgesetze für Glühlampen und LEDs
Kenntnisse	Strahlungsempfang Spektrale Empfindlichkeit Richtungsempfindlichkeit Strahlungsvermittlung durch abbildende Optik Belichtungssteuerung I
Kenntnisse	Beleuchtungstechnik Scheinwerfertechnik Lampenvorsätze Blitztechnik Grundsätze der Lichtführung Beleuchtungsmodelle
Fertigkeiten	die physikalische Definition und Aussagekraft der radiometrischen, spektralen und photometrischen Strahlungsgrößen begreifen
Fertigkeiten	Photometrische Gesetze anwenden und einfache Beleuchtungsgeometrien berechnen
Fertigkeiten	die Grundprinzipien und technischen Ausführungsformen zur Lichterzeugung kennen
Fertigkeiten	die Grundprinzipien und technischen Ausführungsformen von Strahlungsempfängern kennen

Besondere Voraussetzungen

keine

Begleitmaterial	elektronische Vortragsfolien zur Vorlesung , elektronische Übungsaufgabensammlung
Separate Prüfung	Nein

Fertigkeiten	die Strahlungsvermittlung durch ein photographisches Objektiv modellieren und auf die Belichtungssteuerung digitaler Kameras anwenden
Fertigkeiten	den geometrischen und spektralen Strahlungsfluß und deren Anwendung bei der Beleuchtung einer Szene (Lichtführung) und Aufzeichnung (spektrale Anpassung) verstehen und analysieren

Aufwand Präsenzlehre Typ Präsenzzeit (h/Wo.) Vorlesung 3 Übungen (ganzer Kurs) 1 Übungen (geteilter Kurs) Tutorium (freiwillig) 2

Praktikum

Lernziele	
Zieltyp	Beschreibung
Fertigkeiten	Photographische Messtechnik und Lichtmesstechnik anwenden
Fertigkeiten	Richtungsempfindlichkeiten (Empfänger) und Lichtstärkeverteilungskurve (Strahler) messtechnisch bestimmen
Fertigkeiten	optische und elektronische Mittel zur spektralen Anpassung zwischen Lichtquelle und Empfänger gezielt einsetzen
Fertigkeiten	Messtechnik zur Belichtungssteuerung und zum Weißabgleich zielorientiert einsetzen
Fertigkeiten	Lichtführung zur Ausleuchtung und zur Kontraststeuerung einrichten
Fertigkeiten	Ergebnisse darstellen und dokumentieren

Aufwand Präsenzlehre Typ Präsenzzeit (h/Wo.) Praktikum 1 Tutorium (freiwillig) 0

Besondere Voraussetzungen

keine

Begleitmaterial	elektronische Versuchsbeschreibungen , elektronische Entwicklungswerkzeuge für Zugriff auf Rohdaten
Separate Prüfung	Ja

Separate Prüfung	
Prüfungstyp	praxisnahes Szenario bearbeiten (z.B. im Praktikum)
Details	Fachgespräch/Kolloquium vor der Versuchsdurchführung Protokoll-Berichte zu den Versuchen
Mindeststandard	Berichte zu allen Versuchen müssen in korrekter Form mit korrekten Ergebnissen abgegeben worden sein

© 2022 Technische Hochschule Köln